Financial Derivatives Toolbox
 For Use with MATLAB ${ }^{\circledR}$

Computation

Visualization

- Programming

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Financial Derivatives Toolbox User's Guide

© COPYRIGHT 2000-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

June 2000	First printing	New for Version 1 (Release 12)
September 2001	Second printing	Updated for Version 2 (Release 12.1
April 2004	Third printing	Updated for Version 3 (Release 14)
September 2005	Fourth printing	Updated for Version 4 (Release 14SP3)

Getting Started

What Is the Financial Derivatives Toolbox? 1-2
Interest-Rate-Based Derivatives 1-2
Equity Derivatives 1-2
Portfolio Creation 1-4
Interest-Rate-Based Derivatives 1-4
Equity Derivatives 1-5
Adding Instruments to an Existing Portfolio 1-6
Portfolio Management 1-8
Instrument Constructors 1-8
Creating New Instruments or Properties $1-9$
Searching or Subsetting a Portfolio 1-11
Interest-Rate Based Financial Derivatives
2
Introduction 2-2
Financial Instruments 2-2
Interest-Rate Modeling 2-3
Rate and Price Trees 2-5
Viewing Rate or Price Movement with This Toolbox 2-6
Hedging 2-8
Understanding the Interest-Rate Term Structure 2-9
Interest Rates vs. Discount Factors 2-9
Interest-Rate Term Conversions 2-14
Functions That Model the Interest-Rate Term Structure 2-18
Computing Prices and Sensitivities Using the Interest-Rate Term Structure 2-23
Computing Instrument Prices 2-24
Computing Instrument Sensitivities 2-26
Understanding Interest-Rate Models 2-28
Building a Tree of Forward Rates 2-29
Specifying the Volatility Model (VolSpec) 2-31
Specifying the Interest-Rate Term Structure (RateSpec) 2-33
Specifying the Time Structure (TimeSpec) 2-35
Examples of Tree Creation 2-36
Examining Trees 2-37
Computing Prices and Sensitivities Using Interest-Rate Models 2-49
Computing Instrument Prices 2-49
Computing Instrument Sensitivities 2-58
Graphical Representation of Trees 2-61
Observing Interest Rates 2-61
Observing Instrument Prices 2-65
Equity Derivatives
3
Understanding Equity Binary Trees 3-2
Building Equity Binary Trees 3-2
Examples of Equity Tree Creation 3-6
Examining Trees 3-8
Differences Between CRR and EQP Tree Structures 3-10
Understanding Equity Exotic Options 3-11
Asian Option 3-11
Barrier Option 3-12
Compound Option 3-13
Lookback Option 3-13
Bermuda Put and Call Schedule 3-14
Computing Prices and Sensitivities for Equity Derivatives 3-15
Computing Instrument Prices 3-15
Computing Prices Using CRR 3-16
Computing Prices Using EQP 3-18
Examining Output from the Pricing Functions 3-20
Computing Instrument Sensitivities 3-22
Graphical Representation of CRR and EQP Trees 3-24
Hedging Portfolios
4
Hedging 4-2
Hedging Functions 4-3
Hedging with hedgeopt 4-4
Self-Financing Hedges with hedgeslf 4-11
Specifying Constraints with ConSet 4-15
Setting Constraints 4-15
Portfolio Rebalancing 4-17
Hedging with Constrained Portfolios 4-20
Example: Fully Hedged Portfolio 4-20
Example: Minimize Portfolio Sensitivities 4-22
Example: Under-Determined System 4-24
Example: Portfolio Constraints with hedgeslf 4-25
Function Reference
5
Functions - Categorical List 5-2
Portfolio Hedge Allocation 5-3
Price and Sensitivity from the Interest-Rate Term Structure 5-3
Price and Sensitivity from Heath-Jarrow-Morton Trees 5-3
Price and Sensitivity from Black-Derman-Toy Trees 5-3
Price and Sensitivity from Black-Karasinski Trees 5-4
Price and Sensitivity from Cox-Ross-Rubinstein Trees 5-4
Price and Sensitivity from Equal Probabilities Binomial Trees 5-4
Price and Sensitivity from Hull-White Trees 5-5
Heath-Jarrow-Morton Utilities 5-5
Black-Derman-Toy Utilities 5-5
Black-Karasinski Utilities 5-6
Cox-Ross-Rubinstein Utilities 5-7
Equal Probabilities Tree Utilities 5-7
Hull-White Utilities 5-8
Tree Manipulation 5-8
Derivatives Pricing Options 5-8
Instrument Portfolio Handling 5-9
Financial Object Structures 5-10
Interest Term Structure 5-10
Date Function 5-10
Graphical Display Function 5-10
Functions - Alphabetical List 5-11
Derivatives Pricing Options
A
Pricing Options Structure A-2
Default Structure A-2
Customizing the Structure A- 5
Suggested Reading
B
Black-Derman-Toy (BDT) Modeling B-2
Heath-Jarrow-Morton (HJM) Modeling B-2
Hull-White (HW) and Black-Karasinski (BK) Modeling B-2
Cox-Ross-Rubinstein (CRR) Modeling B-2
Equal Probabilities Tree (EQP) Modeling B-3
Financial Derivatives B-3
Glossary
Index

Getting Started

What Is the Financial Derivatives
Toolbox? (p. 1-2)

Portfolio Creation (p. 1-4)

Portfolio Management (p. 1-8)

Various types of interest-rate-based and equity-based derivatives handled by the toolbox.

Use of the instadd function to create a new instrument portfolio or to add new instruments to an existing portfolio.

Functions that construct new types of financial instruments and modify existing financial instruments and portfolios.

What Is the Financial Derivatives Toolbox?

The Financial Derivatives Toolbox provides components for analyzing individual derivative instruments and portfolios containing several types of interest-rate-based and equity-based financial instruments.

Interest-Rate-Based Derivatives

The toolbox provides functionality that supports the creation and management of these interest-rate-based instruments:

- Bonds
- Bond options (put and call)
- Fixed rate notes
- Floating rate notes
- Caps
- Floors
- Swaps

Additionally, the toolbox provides functions for the creation of arbitrary cash flow instruments.

The toolbox provides pricing and sensitivity routines for these instruments. (See "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-23 or "Computing Prices and Sensitivities Using Interest-Rate Models" on page 2-49 for information.)

Equity Derivatives

The toolbox also provides functions for the creation and management of various equity derivatives, including

- Asian options
- Barrier options
- Compound options
- Lookback options
- Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these instruments. (See "Computing Prices and Sensitivities for Equity Derivatives" on page 3-15.)

Portfolio Creation

The instadd function creates a set of instruments (portfolio) or adds instruments to an existing instrument collection. The TypeString argument specifies the type of the investment instrument. For interest-rate-based derivatives the types are: 'Bond', 'OptBond', 'CashFlow', 'Fixed', 'Float', 'Cap', 'Floor', and 'Swap'. For equity derivatives the types are: 'Asian', 'Barrier', 'Compound', 'Lookback', and 'OptStock'.

The input arguments following TypeString are specific to the type of investment instrument. Thus, the TypeString argument determines how the remainder of the input arguments is interpreted.
For example, instadd with the type string 'Bond ' creates a portfolio of bond instruments.

```
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)
```

In a similar manner, instadd can create portfolios of other types of investment instruments. The use of instadd to create portfolios is described in

- "Interest-Rate-Based Derivatives" on page 1-4
- "Equity Derivatives" on page 1-5
- "Adding Instruments to an Existing Portfolio" on page 1-6

Interest-Rate-Based Derivatives

In addition to the bond instrument already described, the toolbox can create portfolios containing the following set of interest-rate-based derivatives:

- Bond option

InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

- Arbitrary cash flow instrument

```
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle,
Basis)
```

- Fixed rate note instrument

InstSet = instadd('Fixed', CouponRate, Settle, Maturity, FixedReset, Basis, Principal)

- Floating rate note instrument

InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, Basis, Principal)

- Cap instrument

InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, Basis, Principal)

- Floor instrument

InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, Basis, Principal)

- Swap instrument

InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Equity Derivatives

The toolbox can create portfolios containing the following set of equity derivatives:

- Asian instrument

InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

- Barrier instrument

InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate)

- Compound instrument

InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

- Lookback instrument

InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

- Stock option instrument

InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

Adding Instruments to an Existing Portfolio

To use the instadd function to add additional instruments to an existing instrument portfolio, provide the name of an existing portfolio as the first argument to the instadd function.
Consider, for example, a portfolio containing two cap instruments only.

```
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
Port_1 = instadd('Cap', Strike, Settle, Maturity);
```

These commands create a portfolio containing two cap instruments with the same settlement and maturity dates, but with different strikes. In general, the input arguments describing an instrument can be either a scalar, or a number of instruments (NumInst)-by-1 vector in which each element corresponds to an instrument. Using a scalar assigns the same value to all instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set.

```
instdisp(Port_1)
```

Index	Type	Strike	Settle	Maturity	CapReset	Basis Principal	
1	Cap	0.06	$08-$ Feb-2000	$15-$ Jan-2003	1	0	100
2	Cap	0.07	$08-$ Feb-2000	15-Jan-2003	1	0	100

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and the same settlement and maturity dates as the cap instruments.

```
CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);
```

Use instdisp again to see the resulting instrument set.

```
instdisp(Port_1)
```

Index Type Strike Settle Maturity CapReset Basis Principal
1 Cap 0.06 08-Feb-2000 15-Jan-2003 $1 \quad 0 \quad 100$
2 Cap 0.07 08-Feb-2000 15 -Jan-2003 1 1 00
Index Type CouponRate Settle Maturity Period Basis ...Face
3 Bond 0.04 08-Feb-2000 15-Jan-2003 200

Portfolio Management

The portfolio management capabilities provided by the Financial Derivatives toolbox include

- Constructors for the most common financial instruments. (See "Instrument Constructors" on page 1-8.)
- The ability to create new instruments or to add new fields to existing instruments. (See "Creating New Instruments or Properties" on page 1-9.)
- The ability to search or subset a portfolio. See "Searching or Subsetting a Portfolio" on page 1-11.)

Instrument Constructors

The toolbox provides constructors for the most common financial instruments.

Note A constructor is a function that builds a structure dedicated to a certain type of object; in this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Instrument

Asian option
Barrier option
Bond
Bond option
Arbitrary cash flow
Compound option instcompound
Fixed rate note instfixed
Floating rate note

Cap

Floor

Constructor

instasian
instbarrier
instbond
instoptbnd
instcf
instfloat
instcap
instfloor

Instrument
Lookback option
Stock option
Swap

Constructor

instlookback instoptstock
instswap

Each instrument has parameters (fields) that describe the instrument. The toolbox functions enable you to

- Create an instrument or portfolio of instruments
- Enumerate stored instrument types and information fields
- Enumerate instrument field data
- Search and select instruments

The instrument structure consists of various fields according to instrument type. A field is an element of data associated with the instrument. For example, a bond instrument contains the fields CouponRate, Settle, Maturity, etc. Additionally, each instrument has a field that identifies the investment type (bond, cap, floor, etc.).

In reality the set of parameters for each instrument is not fixed. Users have the ability to add additional parameters. These additional fields will be ignored by the toolbox functions. They may be used to attach additional information to each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, in general, means that the functions using the instrument set (such as intenvprice or hjmprice) will use default values. At the time of pricing, an error occurs if any of the required fields is missing, such as Strike in a cap or CouponRate in a bond.

Creating New Instruments or Properties

Use the instaddfield function to create a new kind of instrument or to add new properties to the instruments in an existing instrument collection.

To create a new kind of instrument with instaddfield, you need to specify three arguments: 'Type', 'FieldName', and 'Data'. 'Type' defines the type of the new instrument, for example, Future. 'FieldName' names the fields
uniquely associated with the new type of instrument. 'Data' contains the data for the fields of the new instrument.

An optional fourth parameter is 'ClassList'. 'ClassList' specifies the data types of the contents of each unique field for the new instrument.
Here are the syntaxes to create a new kind of instrument using instaddfield.

```
InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,
'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',
ClassList, 'Data' , DataList, 'Type', TypeString)
```

To add new instruments to an existing set, use

```
InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,
'Data', DataList, 'Type', TypeString)
```

As an example, consider a futures contract with a delivery date of July 15 , 2000, and a quoted price of $\$ 104.40$. Since the Financial Derivatives Toolbox does not directly support this instrument, you must create it using the function instaddfield. The parameters used for the creation of the instruments are

- Type: Future
- Field names: Delivery and Price
- Data: Delivery is July 15, 2000, and Price is $\$ 104.40$.

Enter the data into MATLAB.
Type = 'Future';
FieldName = \{'Delivery', 'Price'\};
Data $=\{' J u l-15-2000 ', 104.4\} ;$
Finally, create the portfolio with a single instrument.

```
Port = instaddfield('Type', Type, 'FieldName', FieldName,...
'Data', Data);
```

Now use the function instdisp to examine the resulting single-instrument portfolio.

```
instdisp(Port)
Index Type Delivery Price
1 Future 15-Jul-2000 104.4
```

Because your portfolio Port has the same structure as those created using the function instadd, you can combine portfolios created using instadd with portfolios created using instaddfield. For example, you can now add two cap instruments to Port with instadd.

```
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
Port = instadd(Port, 'Cap', Strike, Settle, Maturity);
```

View the resulting portfolio using instdisp.

```
instdisp(Port)
```

Index	Type	Delivery	Price
1	Future 15-Jul-2000	104.4	

Index	Type	Strike Settle	Maturity	CapReset	Basis Pricipal		
2	Cap	0.06	$08-$ Feb-2000	$15-$ Jan-2003	1	0	100
3	Cap	0.07	$08-$ Feb-2000	$15-$ Jan-2003	1	0	100

Searching or Subsetting a Portfolio

The Financial Derivatives Toolbox provides functions that enable you to

- Find specific instruments within a portfolio
- Create a subset portfolio consisting of instruments selected from a larger portfolio

The instfind function finds instruments with a specific parameter value; it returns an instrument index (position) in a large instrument set. The instselect function, on the other hand, subsets a large instrument set into a portfolio of instruments with designated parameter values; it returns an instrument set (portfolio) rather than an index.

instfind

The general syntax for instfind is

```
IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)
```

InstSet is the instrument set to search. Within InstSet instruments are categorized by type, and each type can have different data fields. The stored data field is a row vector or string for each instrument.

The FieldList, DataList, and TypeList arguments indicate values to search for in the 'FieldName', 'Data', and 'Type' data fields of the instrument set. FieldList is a cell array of field name(s) specific to the instruments. DataList is a cell array or matrix of acceptable values for the parameter(s) specified in FieldList. 'FieldName' and 'Data' (consequently, FieldList and DataList) parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments in the instrument set to check for matches; the default is all indices available in the instrument set. 'TypeList' is a string or cell array of strings restricting instruments to match one of the 'TypeList' types; the default is all types in the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria. Instruments are returned in IndexMatch if all the 'FieldName ', 'Data', ' Index', and 'Type' conditions are met. An instrument meets an individual field condition if the stored 'FieldName' data matches any of the rows listed in the DataList for that FieldName.
instfind Examples. The examples use the provided MAT-file deriv.mat.
The MAT-file contains an instrument set, HJMInstSet, that contains eight instruments of seven types.

```
load deriv.mat
instdisp(HJMInstSet)
```


Find all instruments with a maturity date of January 01, 2003.

```
Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')
Mat2003 =
```

1
4
5
8

Find all cap and floor instruments with a maturity date of January 01, 2004.

```
CapFloor = instfind(HJMInstSet,...
'FieldName','Maturity','Data','01-Jan-2004', 'Type',...
{'Cap';'Floor'})
CapFloor =
```

6
7

Find all instruments where the portfolio is long or short a quantity of 50 .

```
Pos50 = instfind(HJMInstSet,'FieldName',...
'Quantity','Data',{'50';'-50'})
Pos50 =
2
3
```


instselect

The syntax for instselect is exactly the same syntax as for instfind. instselect returns a full portfolio instead of indexes into the original portfolio. Compare the values returned by both functions by calling them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a maturity date of January 01, 2003.

```
Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')
Mat2003 =
```

 1
 4
 5
 8
 Now use the same instrument set as a starting point, but execute the instselect function instead, to produce a new instrument set matching the identical search criteria.

```
Select2003 = ...
instselect(HJMInstSet,'FieldName','Maturity','Data',...
'01-Jan-2003')
instdisp(Select2003)
```

Index	Type	CouponRate	Settle	Maturity	Period B	Basis				Name		Quantity
1	Bond	0.04	01-Jan-2000	01-Jan-2003	1 N	NaN .				4\% bond		100
Index	Type	CouponRate	e Settle	Maturity	FixedR	Reset	Basis	Principal	Name	- Quantity		
2	Fixed	0.04	01-Jan-2000	01-Jan-2003	1		NaN	NaN	4\% Fixed 80			
Index	Type	Spread Set	ttle Matu	Maturity	tReset B	Basis	Princ	ipal Name		Quantity		
3	Float	20 01-J	-Jan-2000 01-J	Jan-2003 1		NaN	NaN 20BP Float 8					
Index	Type	LegRate S	Settle	Maturity	LegReset	t Basi	s Pri	ncipal Leg	Type	Name		Quantity
4	Swap	[0.06 20] 0	01-Jan-2000	01-Jan-2003	$\left[\begin{array}{ll}1 & 1\end{array}\right]$	NaN	NaN	[NaN	N]	6\%/20BP	Swap	p 10

instselect Examples. These examples use the portfolio ExampleInst provided with the MAT-file InstSetExamples.mat.

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	10
2	Option	100	9.2	Call	1
3	Option	105	6.8	Call	11000
Index	Type	Delive	ery		F Contracts
4	Futures	s 01-Jul	-1999		104.4-1000
Index	Type	Strike	Price	Opt	Contracts
5	Option	105	7.4	Put	-1000
6	Option	95	2.9	Put	0
Index	Type P	Price Ma	Maturity		Contracts
7	TBill 9	9901	1-Jul-	1999	6

The instrument set contains three instrument types: 'Option', 'Futures', and 'TBill'. Use instselect to make a new instrument set containing only options struck at 95 . In other words, select all instruments containing the field Strike and with the data value for that field equal to 95.

```
InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95);
instdisp(InstSet)
    Index Type Strike Price Opt Contracts
    1 Option 95 12.2 Call 0
    2 Option 95 2.9 Put 0
```

You can use all the various forms of instselect and instfind to locate specific instruments within this instrument set.

Interest-Rate Based Financial Derivatives

Introduction (p. 2-2)
Understanding the Interest-Rate Term Structure (p. 2-9)
Computing Prices and Sensitivities Using the Interest-Rate Term Structure (p. 2-23)
Understanding Interest-Rate Models (p. 2-28)
Computing Prices and Sensitivities Using Interest-Rate Models (p. 2-49)
Graphical Representation of Trees (p. 2-61)

The interest-rate models used to model fixed-income derivatives. Difference between bushy and recombining trees. Binomial and trinomial trees.

Evolution of interest rates through time.

Computation of prices and sensitivities using interest-rate curves.

Creation of HJM and BDT interest-rate models.

Use of the models in pricing and sensitivity computations.

Use of the treeviewer function to display tree data graphically.

Introduction

The Financial Derivatives Toolbox extends the capabilities of the Financial Toolbox in the areas of fixed-income derivatives and of securities contingent upon interest rates. The toolbox provides components for analyzing individual financial derivative instruments and portfolios. Specifically, it provides the necessary functions for calculating prices and sensitivities, for hedging, and for visualizing results.

This chapter discusses the computation of prices and sensitivities using the interest-rate term structure (sets of zero coupon bonds) in the following sections

- "Understanding the Interest-Rate Term Structure" on page 2-9
- "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-23

Similarly, the chapter discusses the computation of prices and sensitivities using interest-rate models in the sections

- "Understanding the Interest-Rate Term Structure" on page 2-9
- "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-23
- "Understanding Interest-Rate Models" on page 2-28
- "Computing Prices and Sensitivities Using Interest-Rate Models" on page 2-49
- "Graphical Representation of Trees" on page 2-61

Financial Instruments

The toolbox provides a set of functions that perform computations upon portfolios containing up to seven types of interest-rate based financial instruments.

Bond. A long-term debt security with preset interest rate and maturity, by which the principal and interest must be paid.

Bond Option. Puts and calls on portfolios of bonds. The toolbox supports three types of put and call options on bonds:

- American option: An option that can be exercised any time until its expiration date.
- European option: An option that can be exercised only on its expiration date.
- Bermuda option: A Bermuda option is somewhat like a hybrid of American and European options. It can be exercised on predetermined dates only, usually once a month.

Fixed Rate Note. A long-term debt security with preset interest rate and maturity, by which the interest must be paid. The principal may or may not be paid at maturity. In this version of the Financial Derivatives Toolbox, the principal is always paid at maturity.

Floating Rate Note. A security similar to a bond, but in which the note's interest rate is reset periodically, relative to a reference index rate, to reflect fluctuations in market interest rates.

Cap. A contract that includes a guarantee that sets the maximum interest rate to be paid by the holder, based upon an otherwise floating interest rate.

Floor. A contract that includes a guarantee setting the minimum interest rate to be received by the holder, based upon an otherwise floating interest rate.

Swap. A contract between two parties obligating the parties to exchange future cash flows. This version of the Financial Derivatives Toolbox handles only the vanilla swap, which is composed of a floating rate leg and a fixed rate leg.

Additionally, the toolbox provides functions for the creation and pricing of arbitrary cash flow instruments based upon zero coupon bonds or upon any of the various interest rate models that the toolbox supports. (See "Interest-Rate Modeling" below.)

Interest-Rate Modeling

The Financial Derivatives Toolbox computes prices and sensitivities of interest-rate contingent claims based upon several methods of modeling changes in interest rates over time:

- The interest-rate term structure

This model uses sets of zero coupon bonds to predict changes in interest rates.

- Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest rates and a specification of the volatility of forward rates to build a tree representing the evolution of the interest rates, based upon a statistical process.

- Black-Derman-Toy (BDT) model

In the BDT model all security prices and rates depend upon the short rate (annualized one-period interest rate). The model uses long rates and their volatilities to construct a tree of possible future short rates. The resulting tree can then be used to determine the value of interest-rate sensitive securities from this tree.

- Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest-rate dependent securities. The implementation of the HW model in the Financial Derivatives Toolbox is limited to one factor.

- Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the HW model.
For detailed information about interest-rate models, see

- "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-23 for a discussion of price and sensitivity based upon portfolios of zero coupon bonds.
- "Computing Prices and Sensitivities Using Interest-Rate Models" on page 2-49 for a discussion of price and sensitivity based upon the HJM and BDT interest-rate models.

Note Historically, the initial version of the Financial Derivatives toolbox provided only the HJM interest-rate model. A later version added the BDT model. The current version adds both the HW and BK models. This chapter provides extensive examples of using the HJM and BDT models to compute prices and sensitivities of interest-rate based financial derivatives.

The HW and BK tree structures are very similar to the BDT tree structure. To avoid needless repetition throughout this chapter, we provide documentation
only where significant deviations from the BDT structure exist. Specifically, the section "HW and BK Tree Structures" on page 2-44 explains the few noteworthy differences among the various formats.

If you need more detailed information about functions that make use of the HW and BK tree structures, see Chapter 5, "Function Reference." The chapter provides extensive reference information for all functions that compose this toolbox.

Rate and Price Trees

The interest-rate or price trees supported in this toolbox can be either binomial (two branches per node) or trinomial (three branches per node). Typically, binomial trees assume that underlying interest rates or prices can only either increase or decrease at each node. Trinomial trees allow for a more complex movement of rates or prices. With trinomial trees the movement of rates or prices at each node is unrestricted (for example, up-up-up, or unchanged-down-down).

Types of Trees

The Financial Derivatives Toolbox trees can be classified as bushy or recombining. A bushy tree is a tree in which the number of branches increases exponentially relative to observation times; branches never recombine. In this context, a recombining tree is the opposite of a bushy tree. A recombining tree has branches that recombine over time. From any given node, the node reached by taking the path up-down is the same node reached by taking the path down-up. A bushy tree and a recombining binomial tree are illustrated below.

Bushy Tree

Recombining Binomial Tree

In this toolbox the Heath-Jarrow-Morton model works with bushy trees. The Black-Derman-Toy model, on the other hand, works with recombining binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and Black-Karasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement with This Toolbox

This toolbox provides the data file deriv.mat that contains four interest-rate based trees:

- HJMTree - a bushy binomial tree
- BDTTree - a recombining binomial tree
- HWTree and BKTree - recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays the shape and data of price, interest rate, and cash flow trees. Viewed with treeviewer, the bushy shape of an HJM tree and the recombining shape of a BDT tree are apparent.

With treeviewer, you can also see the recombining shape of HW and BK trinomial trees.

HWTree and BKTree (recombining)

Hedging

The Financial Derivatives Toolbox also includes hedging functionality, allowing the rebalancing of portfolios to reach target costs or target sensitivities, which you can set to zero for a neutral-sensitivity portfolio. Optionally, the rebalancing process can be self-financing or directed by a set of user-supplied constraints. For information, see

- "Hedging" on page 4-2 for a discussion of the hedging process.
- "hedgeopt" on page 5-158 for a description of the function that allocates an optimal hedge.
- "hedgeslf" on page 5-161 for a description of the function that allocates a self-financing hedge.

Understanding the Interest-Rate Term Structure

The interest-rate term structure is the representation of the evolution of interest rates through time. In MATLAB, the interest-rate environment is encapsulated in a structure called RateSpec (rate specification). This structure holds all information needed to identify completely the evolution of interest rates. Several functions included in the Financial Derivatives Toolbox are dedicated to the creation and management of the RateSpec structure. Many others take this structure as an input argument representing the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions that provide key functionality for working with interest rates: disc2rate, its opposite, rate2disc, and ratetimes. The first two functions map between discount factors and interest rates. The third function, ratetimes, calculates the effect of term changes on the interest rates.

The topics pertaining to the interest-rate term structure covered in this section include

- "Interest Rates vs. Discount Factors" on page 2-9
- "Interest-Rate Term Conversions" on page 2-14
- "Functions That Model the Interest-Rate Term Structure" on page 2-18

Interest Rates vs. Discount Factors

Discount factors are coefficients commonly used to find the present value of future cash flows. As such, there is a direct mapping between the rate applicable to a period of time, and the corresponding discount factor. The function disc2rate converts discount factors for a given term (period) into interest rates. The function rate2disc does the opposite; it converts interest rates applicable to a given term (period) into the corresponding discount factors.

Calculating Discount Factors from Rates

As an example, consider these annualized zero coupon bond rates.

From	To	Rate
15 Feb 2000	15 Aug 2000	0.05
15 Feb 2000	15 Feb 2001	0.056
15 Feb 2000	15 Aug 2001	0.06
15 Feb 2000	15 Feb 2002	0.065
15 Feb 2000	15 Aug 2002	0.075

To calculate the discount factors corresponding to these interest rates, call rate2disc using the syntax

```
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate)
```

where:

- Compounding represents the frequency at which the zero rates are compounded when annualized. For this example, assume this value to be 2 .
- Rates is a vector of annualized percentage rates representing the interest rate applicable to each time interval.
- EndDates is a vector of dates representing the end of each interest-rate term (period).
- StartDates is a vector of dates representing the beginning of each interest-rate term.
- ValuationDate is the date of observation for which the discount factors are calculated. In this particular example, use February 15, 2000 as the beginning date for all interest-rate terms.

Next, set the variables in MATLAB.

```
StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
```

Finally, compute the discount factors.

```
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,...
ValuationDate)
Disc =
    0.9756
    0.9463
    0.9151
    0.8799
    0.8319
```

By adding a fourth column to the above rates table to include the corresponding discounts, you can see the evolution of the discount factors.

From	To	Rate	Discount
15 Feb 2000	15 Aug 2000	0.05	0.9756
15 Feb 2000	15 Feb 2001	0.056	0.9463
15 Feb 2000	15 Aug 2001	0.06	0.9151
15 Feb 2000	15 Feb 2002	0.065	0.8799
15 Feb 2000	15 Aug 2002	0.075	0.8319

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments: EndTimes and StartTimes. These vectors of time factors represent the start dates and end dates in discount periodic units. The scale of these units is determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the previous example.

```
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,...
EndDates, StartDates, ValuationDate);
```

Arrange the two vectors into a single array for easier visualization.

```
Times = [StartTimes, EndTimes]
Times \(=\)
    \(0 \quad 1\)
    \(0 \quad 2\)
    03
    \(0 \quad 4\)
    \(0 \quad 5\)
```

Because the valuation date is equal to the start date for all periods, the StartTimes vector is composed of zeros. Also, since the value of Compounding is 2 , the rates are compounded semiannually, which sets the units of periodic discount to six months. The vector EndDates is composed of dates separated by intervals of six months from the valuation date. This explains why the EndTimes vector is a progression of integers from one to five.

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses periodic discount units instead of dates. Since the relationship between discount factors and interest rates is based on time periods and not on absolute dates, this form of rate2disc allows you to work directly with time periods. In this mode, the valuation date corresponds to zero, and the vectors StartTimes and EndTimes are used as input arguments instead of their date equivalents, StartDates and EndDates. This syntax for rate2disc is

```
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
```

Using as input the StartTimes and EndTimes vectors computed previously, you should obtain the previous results for the discount factors.

```
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =
    0.9756
    0.9463
    0.9151
    0 . 8 7 9 9
    0.8319
```


Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates applicable to a set of compounding periods, given the discount factor in those periods. The syntax for calling this function is

```
Rates = disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate)
```

Each argument to this function has the same meaning as in rate2disc. Use the results found in the previous example to return the rate values you started with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,... ValuationDate)

Rates =
0.0500
0.0560
0.0600
0.0650
0.0750

Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and EndTimes vectors representing the start and end times measured in discount periodic units. Again, working with the same values as before, you should obtain the same numbers.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,... EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

```
Result = [StartTimes, EndTimes, Rates]
Result =
```

0	1.0000	0.0500
0	2.0000	0.0560
0	3.0000	0.0600

0	4.0000	0.0650
0	5.0000	0.0750

As with rate2disc, the relationship between rates and discount factors is determined by time periods and not by absolute dates. Consequently, the alternate syntax for disc2rate uses time vectors instead of dates, and it assumes that the valuation date corresponds to time $=0$. The times-based calling syntax is

```
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);
```

Using this syntax, we again obtain the original values for the interest rates.

```
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)
Rates =
    0.0500
    0 . 0 5 6 0
    0 . 0 6 0 0
    0.0650
    0.0750
```


Interest-Rate Term Conversions

Interest rate evolution is typically represented by a set of interest rates, including the beginning and end of the periods the rates apply to. For zero rates, the start dates are typically at the valuation date, with the rates extending from that valuation date until their respective maturity dates.

Spot Curve to Forward Curve Conversion

Frequently, given a set of rates including their start and end dates, you may be interested in finding the rates applicable to different terms (periods). This problem is addressed by the function ratetimes. This function interpolates the interest rates given a change in the original terms. The syntax for calling ratetimes is
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);
where:

- Compounding represents the frequency at which the zero rates are compounded when annualized.
- RefRates is a vector of initial interest rates representing the interest rates applicable to the initial time intervals.
- RefEndDates is a vector of dates representing the end of the interest rate terms (period) applicable to RefRates.
- RefStartDates is a vector of dates representing the beginning of the interest rate terms applicable to RefRates.
- EndDates represent the maturity dates for which the interest rates are interpolated.
- StartDates represent the starting dates for which the interest rates are interpolated.
- ValuationDate is the date of observation, from which the StartTimes and EndTimes are calculated. This date represents time $=0$.

The input arguments to this function can be separated into two groups:

- The initial or reference interest rates, including the terms for which they are valid
- Terms for which the new interest rates are calculated

As an example, consider the rate table specified earlier.

From	To	Rate
15 Feb 2000	15 Aug 2000	0.05
15 Feb 2000	15 Feb 2001	0.056
15 Feb 2000	15 Aug 2001	0.06
15 Feb 2000	15 Feb 2002	0.065
15 Feb 2000	15 Aug 2002	0.075

Assuming that the valuation date is February 15, 2000, these rates represent zero coupon bond rates with maturities specified in the second column. Use the function ratetimes to calculate the forward rates at the beginning of all periods implied in the table. Assume a compounding value of 2.

```
% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];
% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';...
'15-Aug-2001'; '15-Feb-2002'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
% Find the new rates.
Rates = ratetimes(Compounding, RefRates, RefEndDates,...
RefStartDates, EndDates, StartDates, ValuationDate);
Rates =
    0.0500
    0.0620
    0.0680
    0.0801
    0.1155
```

Place these values in a table similar to the one above. Observe the evolution of the forward rates based on the initial zero coupon rates.

From	To	Rate
15 Feb 2000	15 Aug 2000	0.0500
15 Aug 2000	15 Feb 2001	0.0620
15 Feb 2001	15 Aug 2001	0.0680
15 Aug 2001	15 Feb 2002	0.0801
15 Feb 2002	15 Aug 2002	0.1155

Alternative Syntax (ratetimes)

The function rate2times can provide the additional output arguments StartTimes and EndTimes, which represent the time factor equivalents to the StartDates and EndDates vectors. The ratetimes function uses time factors for interpolating the rates. These time factors are calculated from the start and end dates, and the valuation date, which are passed as input arguments. ratetimes can also use time factors directly, assuming time $=0$ as the valuation date. This alternate syntax is

```
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes);
```

Use this alternate version of ratetimes to find the forward rates again. In this case, you must first find the time factors of the reference curve. Use date2time for this.

```
RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)
RefEndTimes =
    1
    2
    3
    4
    5
RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)
RefStartTimes =
    0
```

These are the expected values, given semiannual discounts (as denoted by a value of 2 in the variable Compounding), end dates separated by six-month periods, and the valuation date equal to the date marking beginning of the first period (time factor $=0$).

Now call ratetimes with the alternate syntax.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding,... RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

```
Rates =
    0.0500
    0.0620
    0.0680
    0.0801
    0.1155
```

EndTimes and StartTimes have, as expected, the same values they had as input arguments.

```
Times = [StartTimes, EndTimes]
Times =
    0 1
    2
    2 3
    3 4
    4
```


Functions That Model the Interest-Rate Term Structure

The Financial Derivatives Toolbox includes a set of functions to encapsulate interest-rate term information into a single structure. These functions present a convenient way to package all information related to interest-rate terms into a common format, and to resolve interdependencies when one or more of the parameters is modified. For information, see

- "Creation or Modification (intenvset)" on page 2-18 for a discussion of how to create or modify an interest-rate term structure (RateSpec) using the intenvset function.
- "Obtaining Specific Properties (intenvget)" on page 2-20 for a discussion of how to extract specific properties from a RateSpec.

Creation or Modification (intenvset)

The main function to create or modify an interest-rate term structure RateSpec (rates specification) is intenvset. If the first argument to this function is a previously created RateSpec, the function modifies the existing rate
specification and returns a new one. Otherwise, it creates a new RateSpec. The other intenvset arguments are property-value pairs, indicating the new value for these properties. The properties that can be specified or modified are

- Compounding
- Disc
- Rates
- EndDates
- StartDates
- ValuationDate
- Basis
- EndMonthRule

To learn about the properties EndMonthRule and Basis, type help ftbEndMonthRule and help ftbBasis or see the Financial Toolbox documentation.

Consider again the original table of interest rates.

From	To	Rate
15 Feb 2000	15 Aug 2000	0.05
15 Feb 2000	15 Feb 2001	0.056
15 Feb 2000	15 Aug 2001	0.06
15 Feb 2000	15 Feb 2002	0.065
15 Feb 2000	15 Aug 2002	0.075

Use the information in this table to populate the RateSpec structure.

```
StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000';
        '15-Feb-2001';
        '15-Aug-2001';
        '15-Feb-2002';
        '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
```

```
rs = intenvset('Compounding',Compounding,'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates,...
'ValuationDate', ValuationDate)
rs =
            FinObj:'RateSpec'
    Compounding:2
            Disc:[5x1 double]
            Rates:[5x1 double]
        EndTimes:[5x1 double]
        StartTimes:[5x1 double]
            EndDates:[5\times1 double]
        StartDates:730531
ValuationDate:730531
            Basis: 0
EndMonthRule: 1
```

Some of the properties filled in the structure were not passed explicitly in the call to RateSpec. The values of the automatically completed properties depend upon the properties that are explicitly passed. Consider for example the StartTimes and EndTimes vectors. Since the StartDates and EndDates vectors are passed in, as well as the ValuationDate, intenvset has all the information needed to calculate StartTimes and EndTimes. Hence, these two properties are read only.

Obtaining Specific Properties (intenvget)

The complementary function to intenvset is intenvget. This function obtains specific properties from the interest-rate term structure. The syntax of this function is

```
ParameterValue = intenvget(RateSpec, 'ParameterName')
```

To obtain the vector EndTimes from the RateSpec structure, enter

```
EndTimes = intenvget(rs, 'EndTimes')
```

```
EndTimes =
    1
    2
    3
    4
    5
```

To obtain Disc, the values for the discount factors that were calculated automatically by intenvset, type

```
Disc = intenvget(rs, 'Disc')
Disc =
    0.9756
    0.9463
    0.9151
    0.8799
    0.8319
```

These discount factors correspond to the periods starting from StartDates and ending in EndDates.

Note Although you can directly access these fields within the structure instead of using intenvget, we strongly advise against this. The format of the interest-rate term structure could change in future versions of the toolbox. Should that happen, any code accessing the RateSpec fields directly would stop working.

Now use the RateSpec structure with its functions to examine how changes in specific properties of the interest-rate term structure affect those depending upon it. As an exercise, change the value of Compounding from 2 (semiannual) to 1 (annual).

```
rs = intenvset(rs, 'Compounding', 1);
```

Since StartTimes and EndTimes are measured in units of periodic discount, a change in Compounding from 2 to 1 redefines the basic unit from semiannual to annual. This means that a period of six months is represented with a value of

```
0.5, and a period of one year is represented by 1. To obtain the vectors
StartTimes and EndTimes, enter
StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
Times = [StartTimes, EndTimes]
Times =
```

$0 \quad 0.5000$
$0 \quad 1.0000$
$0 \quad 1.5000$
$0 \quad 2.0000$
$0 \quad 2.5000$

Since all the values in StartDates are the same as the valuation date, all StartTimes values are zero. On the other hand, the values in the EndDates vector are dates separated by six-month periods. Since the redefined value of compounding is 1, EndTimes becomes a sequence of numbers separated by increments of 0.5 .

Computing Prices and Sensitivities Using the Interest-Rate Term Structure

The Financial Derivatives Toolbox contains a family of functions that find the price and sensitivities of several financial instruments based on interest-rate curves. For information, see

- "Computing Instrument Prices" on page 2-24 for a discussion on using the intenvprice function to price a portfolio of instruments based on a set of zero curves.
- "Computing Instrument Sensitivities" on page 2-26 for a discussion on computing delta and gamma sensitivities with the intenvsens function.

The instruments can be presented to the functions as a portfolio of different types of instruments or as groups of instruments of the same type. The current version of the toolbox can compute price and sensitivities for four instrument types using interest-rate curves:

- Bonds
- Fixed rate notes
- Floating rate notes
- Swaps

In addition to these instruments, the toolbox also supports the calculation of price and sensitivities of arbitrary sets of cash flows.

Note that options and interest-rates floors and caps are absent from the above list of supported instruments. These instruments are not supported because their pricing and sensitivity function require a stochastic model for the evolution of interest rates. The interest-rate term structure used for pricing is treated as deterministic, and as such is not adequate for pricing these instruments.

The Financial Derivatives Toolbox additionally contains functions that use the Heath-Jarrow-Morton (HJM) and Black-Derman-Toy (BDT) models to compute prices and sensitivities for financial instruments. These models additionally support computations involving options and interest-rate floors and caps. See "Computing Prices and Sensitivities Using Interest-Rate Models" on page 2-49 for information on computing price and sensitivities of financial instruments using the HJM and BDT models.

Computing Instrument Prices

The main function used for pricing portfolios of instruments is intenvprice. This function works with the family of functions that calculate the prices of individual types of instruments. When called, intenvprice classifies the portfolio contained in InstSet by instrument type, and calls the appropriate pricing functions. The map between instrument types and the pricing function intenvprice calls is
bondbyzero: Price bond by a set of zero curves
fixedbyzero: Price fixed rate note by a set of zero curves
floatbyzero: Price floating rate note by a set of zero curves
swapbyzero: Price swap by a set of zero curves
You can use each of these functions individually to price an instrument. Consult the reference pages for specific information on using these functions.
intenvprice takes as input an interest-rate term structure created with intenvset, and a portfolio of interest-rate contingent derivatives instruments created with instadd. To learn more about instadd and the interest rate term structure, see Chapter 1, "Getting Started."

The syntax for using intenvprice to price an entire portfolio is

```
Price = intenvprice(RateSpec, InstSet)
```

where:

- RateSpec is the interest-rate term structure.
- InstSet is the name of the portfolio.

Example: Pricing a Poriffolio of Instruments

Consider this example of using the intenvprice function to price a portfolio of instruments supplied with the Financial Derivatives Toolbox.

The provided MAT-file deriv.mat stores a portfolio as an instrument set variable ZeroInstSet. The MAT-file also contains the interest-rate term structure ZeroRateSpec. You can display the instruments with the function instdisp.

```
load deriv.mat;
```

Index	Type	CouponRate	Settle	Maturity	Period	Basis.
1	Bond	0.04	01-Jan-2000	01-Jan-2003	31	NaN.
2	Bond	0.04	01-Jan-2000	01-Jan-2004	4	NaN.
Index	Type	CouponRate	e Settle	Maturity Fix	FixedReset	Basis.
3	Fixed	0.04	01-Jan-2000	01-Jan-2003 1	1	NaN .
Index	Type	Spread Set	tle M	Maturity F	FloatReset	Basis
4	Float	20 01-J	-Jan-2000	01-Jan-2003	1	NaN.
Index	Type L	LegRate S	Settle	Maturity	LegReset	Basis.
5	Swap	[0.06 20]	01-Jan-2000	01-Jan-2003	3 [11]	NaN.

Use intenvprice to calculate the prices for the instruments contained in the portfolio ZeroInstSet.

```
format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices =
```

98.72
97.53
98.72
100.55
3.69

The output Prices is a vector containing the prices of all the instruments in the portfolio in the order indicated by the Index column displayed by instdisp. Consequently, the first two elements in Prices correspond to the first two bonds; the third element corresponds to the fixed rate note; the fourth to the floating rate note; and the fifth element corresponds to the price of the swap.

Computing Instrument Sensitivities

In general, you can compute sensitivities either as dollar price changes or as percentage price changes. The toolbox reports all sensitivities as dollar sensitivities.

Using the interest-rate term structure, you can calculate two types of derivative price sensitivities, delta and gamma. Delta represents the dollar sensitivity of prices to shifts in the observed forward yield curve. Gamma represents the dollar sensitivity of delta to shifts in the observed forward yield curve.

The intenvsens function computes instrument sensitivities as well as instrument prices. If you need both the prices and sensitivity measures, use intenvsens. A separate call to intenvprice is not required.

Here is the syntax
[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)
where, as before:

- RateSpec is the interest-rate term structure.
- InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and prices.
format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);
Display the results in a single matrix in bank format.

```
All = [Delta Gamma Price]
All =
\begin{tabular}{rrr}
-272.64 & 1029.84 & 98.72 \\
-347.44 & 1622.65 & 97.53 \\
-272.64 & 1029.84 & 98.72 \\
-1.04 & 3.31 & 100.55 \\
-282.04 & 1059.62 & 3.69
\end{tabular}
```

To view the per-dollar sensitivity, divide the first two columns by the last one. [Delta./Price, Gamma./Price, Price] ans =

-2.76	10.43	98.72
-3.56	16.64	97.53
-2.76	10.43	98.72
-0.01	0.03	100.55
-76.39	286.98	3.69

Understanding Interest-Rate Models

The Financial Derivatives Toolbox supports the Black-Derman-Toy (BDT), Black-Karasinski (BK), Heath-Jarrow-Morton (HJM), and Hull-White (HW) interest-rate models.

- To learn how to create forward-rate trees from their component elements, see "Building a Tree of Forward Rates" on page 2-29. This section provides detailed information about creating the volatility, rate, and time specifications that serve as inputs to the tree creation functions. You will find the details under these specific headings:
- "Specifying the Volatility Model (VolSpec)" on page 2-31.
- "Specifying the Interest-Rate Term Structure (RateSpec)" on page 2-33.
- "Specifying the Time Structure (TimeSpec)" on page 2-35.
- To view some examples of trees, see "Examples of Tree Creation" on page 2-36.
- To examine the details of an interest-rate structure, see "Examining Trees" on page 2-37.

The Heath-Jarrow-Morton model is one of the most widely used models for pricing interest-rate derivatives. The model considers a given initial term structure of interest rates and a specification of the volatility of forward rates to build a tree representing the evolution of the interest rates, based upon a statistical process. For further explanation, see the book Modelling Fixed Income Securities and Interest Rate Options by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for pricing interest-rate derivatives. The model considers a given initial zero rate term structure of interest rates and a specification of the yield volatilities of long rates to build a tree representing the evolution of the interest rates. For further explanation, see the paper "A One Factor Model of Interest Rates and its Application to Treasury Bond Options" by Fischer Black, Emanuel Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest rate dependent securities. The implementation of the Hull-White model in the Financial Derivatives Toolbox is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see the book Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates

The tree of forward rates is the fundamental unit representing the evolution of interest rates in a given period of time. This section explains how to create a forward-rate tree using the Financial Derivatives Toolbox.

Note To avoid needless repetition, this document uses the HJM and BDT models to illustrate the creation and use of interest-rate trees. The HW and BK models are similar to the BDT model. Where specific differences exist, they are documented in the section "HW and BK Tree Structures" on page 2-44.

The MATLAB functions that create rate trees are hjmtree and bdttree. The hjmtree function creates the structure, HJMTree, containing time and forward-rate information for a bushy tree. The bdttree function creates a similar structure, BDTTree, for a recombining tree.

This structure is a self-contained unit that includes the tree of rates (found in the FwdTree field of the structure), and the volatility, rate, and time specifications used in building this tree.

These functions take three structures as input arguments:

- The volatility model VolSpec. (See "Specifying the Volatility Model (VolSpec)" on page 2-31.)
- The interest-rate term structure RateSpec. (See "Specifying the Interest-Rate Term Structure (RateSpec)" on page 2-33.)
- The tree time layout TimeSpec. (See "Specifying the Time Structure (TimeSpec)" on page 2-35.)

An easy way to visualize any trees you create is with the treeviewer function, which displays trees in a graphical manner. See "Graphical Representation of Trees" on page 2-61 for information about treeviewer.

Calling Sequence

The calling syntax for hjmtree is

```
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)
```

Similarly, the calling syntax for bdttree is

```
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)
```

Each of these functions requires VolSpec, RateSpec, and TimeSpec input arguments:

- VolSpec is a structure that specifies the forward-rate volatility process. You create VolSpec using either of the functions hjmvolspec or bdtvolspec.
The hjmvolspec function supports the specification of up to three factors. It handles these models for the volatility of the interest-rate term structure:
- Constant
- Stationary
- Exponential
- Vasicek
- Proportional

A one-factor model assumes that the interest term structure is affected by a single source of uncertainty. Incorporating multiple factors allows you to specify different types of shifts in the shape and location of the interest-rate structure. See hjmvolspec for details.
The bdtvolspec function supports only a single volatility factor. The volatility remains constant between pairs of nodes on the tree. You supply the input volatility values in a vector of decimal values. See bdtvolspec for details.

- RateSpec is the interest-rate specification of the initial rate curve. You create this structure with the function intenvset. (See "Functions That Model the Interest-Rate Term Structure" on page 2-18.)
- TimeSpec is the tree time layout specification. You create this variable with the functions hjmtimespec or bdttimespec. It represents the mapping between level times and level dates for rate quoting. This structure indirectly determines the number of levels in the tree.

Specifying the Volatility Model (VolSpec)

Because HJM supports multifactor (up to three) volatility models while BDT (also, BK and HW) supports only a single volatility factor, the hjmvolspec and bdtvolspec functions require somewhat different inputs and generate slightly different outputs. For examples see "Creating an HJM Volatility Model" on page 2-31. For BDT examples see "Creating a BDT Volatility Model" on page 2-32.

Creating an HJM Volatility Model

The function hjmvolspec generates the structure VolSpec, which specifies the volatility process $\sigma(t, T)$ used in the creation of the forward-rate trees. In this context T represents the starting time of the forward rate, and t represents the observation time. The volatility process can be constructed from a combination of factors specified sequentially in the call to function that creates it. Each factor specification starts with a string specifying the name of the factor, followed by the pertinent parameters.

HJM Volatility Specification Example. Consider an example that uses a single factor, specifically, a constant-sigma factor. The constant factor specification requires only one parameter, the value of σ. In this case, the value corresponds to 0.10 .

```
HJMVolSpec = hjmvolspec('Constant', 0.10)
HJMVolSpec =
    FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
    FactorArgs: {{1x1 cell}}
    SigmaShift: 0
    NumFactors: 1
        NumBranch: 2
            PBranch: [0.5000 0.5000]
    Fact2Branch: [-1 1]
```

The NumFactors field of the VolSpec structure, VolSpec.NumFactors $=1$, reveals that the number of factors used to generate VolSpec was one. The FactorModels field indicates that it is a 'Constant' factor, and the NumBranches field indicates the number of branches. As a consequence, each node of the resulting tree has two branches, one going up, and the other going down.

Consider now a two-factor volatility process made from a proportional factor and an exponential factor.

```
% Exponential factor
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [ 1 ; 2 ; 3 ];
% Build VolSpec
HJMVolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,...
1e6,'Exponential', Sigma_0, Lambda)
HJMVolSpec =
    FinObj: 'HJMVolSpec'
FactorModels: {'Proportional' 'Exponential'}
    FactorArgs: {{1x3 cell} {1x2 cell}}
    SigmaShift: 0
    NumFactors: 2
        NumBranch: 3
            PBranch: [0.2500 0.2500 0.5000]
    Fact2Branch: [2x3 double]
```

The output shows that the volatility specification was generated using two factors. The tree has three branches per node. Each branch has probabilities of $0.25,0.25$, and 0.5 , going from top to bottom.

Creating a BDT Volatility Model

The function bdtvolspec generates the structure VolSpec, which specifies the volatility process. The function requires three input arguments:

- The valuation date ValuationDate
- The yield volatility end dates VolDates
- The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation method, can be included.

The syntax used for calling bdtvolspec is

```
BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,...
InterpMethod)
```

where:

- ValuationDate is the first observation date in the tree.
- VolDates is a vector of dates representing yield volatility end dates.
- VolCurve is a vector of yield volatility values.
- InterpMethod is the method of interpolation to use. The default is 'linear'.

BDT Volatility Specification Example. Consider the example

```
ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];
```

Use bdtvolspec to create a volatility specification. Because no interpolation method is explicitly specified, the function uses the 'linear' default.

```
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
            FinObj: 'BDTVolSpec'
    ValuationDate: 730486
        VolDates: [5x1 double]
        VolCurve: [5x1 double]
    VolInterpMethod: 'linear'
```


Specifying the Interest-Rate Term Structure (RateSpec)

The structure RateSpec is an interest term structure that defines the initial forward-rate specification from which the tree rates are derived. The section "Functions That Model the Interest-Rate Term Structure" on page 2-18 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Rate Specification Creation Example

Consider the example

```
Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';
    '01-Jan-2001';
    '01-Jan-2002';
    '01-Jan-2003'];
EndDates = ['01-Jan-2001';
    '01-Jan-2002';
    '01-Jan-2003';
    '01-Jan-2004'];
ValuationDate = '01-Jan-2000';
RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)
RateSpec =
            FinObj: 'RateSpec'
        Compounding: 1
            Disc: [4x1 double]
                    Rates: [4x1 double]
            EndTimes: [4\times1 double]
        StartTimes: [4x1 double]
            EndDates: [4x1 double]
            StartDates: [4\times1 double]
ValuationDate: 730486
            Basis: 0
        EndMonthRule: 1
```

Use the function datedisp to examine the dates defined in the variable RateSpec. For example

```
datedisp(RateSpec.ValuationDate)
```

01-Jan-2000

Specifying the Time Structure (TimeSpec)

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines the mapping between the observation times at each level of the tree and the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function. These functions require three input arguments:

- The valuation date ValuationDate
- The maturity date Maturity
- The compounding rate Compounding

For example, the syntax used for calling hjmtimespec is
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
where:

- ValuationDate is the first observation date in the tree.
- Maturity is a vector of dates representing the cash flow dates of the tree. Any instrument cash flows with these maturities fall on tree nodes.
- Compounding is the frequency at which the rates are compounded when annualized.

Creating a Time Specification

Calling the time specification creation functions with the same data used to create the interest-rate term structure, RateSpec builds the structure that specifies the time layout for the tree.

HJM Time Specification Example. Consider the example

```
Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
HJMTimeSpec =
            FinObj: 'HJMTimeSpec'
ValuationDate: 730486
            Maturity: [4x1 double]
    Compounding: 1
            Basis: 0
    EndMonthRule: 1
```

Note that the maturities specified when building TimeSpec do not have to coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec defines the time-date mapping of the tree, the rates in RateSpec are interpolated to obtain the initial rates with maturities equal to those found in TimeSpec.

Creating a BDT Time Specification. Consider the example

```
Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
BDTTimeSpec =
```

 FinObj: 'BDTTimeSpec'
 ValuationDate: 730486
Maturity: [4x1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

Examples of Tree Creation

Use the VolSpec, RateSpec, and TimeSpec you have previously created as inputs to the functions used to create HJM and BDT trees.

Creating an HJM Tree

\% Reset the volatility factor to the Constant case HJMVolSpec = hjmvolspec('Constant', 0.10);

HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)
HJMTree =

FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1123$]$
TFwd: \{[4x1 double] [3x1 double] [2x1 double] [3]\}

```
CFlowT: \{[4x1 double] [3x1 double] [2x1 double] [4]\} FwdTree:\{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]\}
```


Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and TimeSpec as input to the function bdttree to create a BDT tree.

```
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)
BDTTree =
    FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1.00 2.00 3.00]
    TFwd: {[4\times1 double] [3\times1 double] [2x1 double] [3.00]}
    CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]}
FwdTree: {[1.02] [1.02 1.02][1.01 1.02 1.03][1.01 1.02 1.02 1.03]}
```


Examining Trees

When working with the models, the Financial Derivatives Toolbox uses trees to represent forward rates, prices, etc. At the highest level, these trees have structures wrapped around them. The structures encapsulate information needed to interpret completely the information contained in a tree.

Consider this example, which uses the interest rate and portfolio data in the MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.
load deriv.mat
Display the list of the variables loaded from the MAT-file.
whos

Name	Size	Bytes	Class
BDTInstSet	1×1		
BDTTree	1×1	5956	struct array
	5138	struct array	

BKInstSet	1×1	15946	struct array
BKTree	1×1	5904	struct array
CRRInstSet	1×1	12434	struct array
CRRTree	1×1	5058	struct array
EQPInstSet	1×1	12434	struct array
EQPTree	1×1	5058	struct array
HJMInstSet	1×1	15948	struct array
HJMTree	1×1	5838	struct array
HWInstSet	1×1	15946	struct array
HWTree	1×1	5904	struct array
ZeroInstSet	1×1	10282	struct array
ZeroRateSpec	1×1	1580	struct array

HJM Tree Structure

You can now examine in some detail the contents of the HJMTree structure contained in this file.

```
HJMTree
HJMTree =
    FinObj: 'HJMFwdTree'
    VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
            tObs: [0 1 2 3]
            TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
    CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1\times4x2 double]}
```

FwdTree contains the actual forward-rate tree. MATLAB represents it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most important of these are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and rate structure information respectively.

First Node. Observe the forward rates in FwdTree. The first node represents the valuation date, tObs $=0$.

```
HJMTree.FwdTree{1}
ans =
    1.0356
    1.0468
    1.0523
    1.0563
```

Note The Financial Derivatives Toolbox uses inverse discount notation for forward rates in the tree. An inverse discount represents a factor by which the present value of an asset is multiplied to find its future value. In general, these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see where these values originate. Arrange the values in a single array.

```
[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes...
HJMTree.RateSpec.Rates]
ans =
\begin{tabular}{rrr}
0 & 1.0000 & 0.0356 \\
1.0000 & 2.0000 & 0.0468 \\
2.0000 & 3.0000 & 0.0523 \\
3.0000 & 4.0000 & 0.0563
\end{tabular}
```

If you find the corresponding inverse discounts of the interest rates in the third column, you have the values at the first node of the tree. You can turn interest rates into inverse discounts using the function rate2disc.

```
Disc = rate2disc(HJMTree.TimeSpec.Compounding,...
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,...
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc
FRates =
    1.0356
    1.0468
```

```
1.0523
1.0563
```

Second Node. The second node represents the first rate observation time, tObs $=1$. This node displays two states: one representing the branch going up and the other representing the branch going down.

Note that HJMTree.VolSpec.NumBranch $=2$.
HJMTree.VolSpec
ans =

FinObj: 'HJMVolSpec'
FactorModels: \{'Constant'\}
FactorArgs: \{\{1x1 cell\}\}
SigmaShift: 0
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]
Examine the rates of the node corresponding to the up branch.

```
HJMTree.FwdTree{2}(:,:,1)
ans =
    1.0364
    1.0420
    1.0461
```

Now examine the corresponding down branch.

```
HJMTree.FwdTree{2}(: , : ,2)
ans =
    1.0574
    1.0631
    1.0672
```

Third Node. The third node represents the second observation time, tObs $=2$. This node contains a total of four states, two representing the branches going up and the other two representing the branches going down.

Examine the rates of the node corresponding to the up states.

```
HJMTree.FwdTree{3}(:,:,1)
ans =
    1.0317 1.0526
    1.0358 1.0568
```

Next examine the corresponding down states.

```
HJMTree.FwdTree{3}(:,:,2)
ans =
    1.0526 1.0738
    1.0568 1.0781
```

Isolating a Specific Node. Starting at the third level, indexing within the tree cell array becomes complex, and isolating a specific node can be difficult. The function bushpath isolates a specific node by specifying the path to the node as a vector of branches taken to reach that node. As an example, consider the node reached by starting from the root node, taking the branch up, then the branch down, and then another branch down. Given that the tree has only two branches per node, branches going up correspond to a 1, and branches going down correspond to a 2 . The path up-down-down becomes the vector [112 2].

```
FRates = bushpath(HJMTree.FwdTree, [1 2 2])
FRates =
    1.0356
    1.0364
    1.0526
    1.0674
```

bushpath returns the spot rates for all the nodes touched by the path specified in the input argument, the first one corresponding to the root node, and the last one corresponding to the target node.

Isolating the same node using direct indexing obtains

```
HJMTree.FwdTree{4}(:, 3, 2)
ans =
    1.0674
```

As expected, this single value corresponds to the last element of the rates returned by bushpath.

You can use these techniques with any type of tree generated with the Financial Derivatives Toolbox, such as forward-rate trees or price trees.

BDT Tree Structure

You can now examine in some detail the contents of the BDTTree structure.
BDTTree

```
BDTTree =
    FinObj: 'BDTFwdTree'
    VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
        CFlowT: {[4\times1 double] [3\times1 double] [2\times1 double] [4]}
    FwdTree: {1x4 cell}
```

FwdTree contains the actual rate tree. MATLAB represents it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most important of these are VolSpec, TimeSpec, and RateSpec, which contain the volatility, rate structure, and time structure information respectively.

Look at the RateSpec structure used in generating this tree to see where these values originate. Arrange the values in a single array.
[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes... BDTTree.RateSpec.Rates]
ans $=$

0	1.0000	0.1000
0	2.0000	0.1100
0	3.0000	0.1200
0	4.0000	0.1250

Look at the rates in FwdTree. The first node represents the valuation date, tObs $=0$. The second node represents tObs $=1$. Examine the rates at the second, third and fourth nodes.

```
BDTTree.FwdTree{2}
    ans =
    1.0979 1.1432
```

The second node represents the first observation time, tObs $=1$. This node contains a total of two states, one representing the branch going up (1.0979) and the other representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the upper branch. Consequently, when displaying rates, rates are falling on the upper branch and increasing on the lower.

```
BDTTree.FwdTree{3}
ans =
    1.0976 1.1377 1.1942
```

The third node represents the second observation time, tObs $=2$. This node contains a total of three states, one representing the branch going up (1.0976),
one representing the branch in the middle (1.1377) and the other representing the branch going down (1.1942).

```
BDTTree.FwdTree{4}
ans =
    1.0872 1.1183 1.1606 1.2179
```

The fourth node represents the third observation time, tObs $=3$. This node contains a total of four states, one representing the branch going up (1.0872), two representing the branches in the middle (1.1183 and 1.1606) and the other representing the branch going down (1.2179).

Isolating a Specific Node. The function treepath isolates a specific node by specifying the path to the node as a vector of branches taken to reach that node. As an example, consider the node reached by starting from the root node, taking the branch up, then the branch down, and finally another branch down. Given that the tree has only two branches per node, branches going up correspond to a 1 , and branches going down correspond to a 2 . The path up-down-down becomes the vector [lllllllllllll 122$].$

```
FRates = treepath(BDTTree.FwdTree, [llll
FRates =
```

 1.1000
 1.0979
 1.1377
 1.1606
 treepath returns the short rates for all the nodes touched by the path specified in the input argument, the first one corresponding to the root node, and the last one corresponding to the target node.

HW and BK Tree Structures

The HW and BK tree structures are very similar to the BDT tree structure. You can see this if you examine the sample HW tree contained in the file deriv.mat.

```
load deriv.mat:
```

```
HWTree
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3\times1 double] [3x3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}
```

All fields of this structure are similar to their BDT counterparts. There are two additional fields not present in BDT: Probs and Connect. The Probs field represents the occurrence probabilities at each branch of each node in the tree. The Connect field describes the connectivity of the nodes of a given tree level to nodes to the next tree level.

Probs Field. While BDT and one-factor HJM models have equal probabilities for each branch at a node, HW and BK do not. For HW and BK trees, the Probs field indicates the likelihood that a particular branch will be taken in moving from one node to another node on the next level.

The Probs field consists of a cell array with one cell per tree level. Each cell is a 3-by-NUMNODES array with the top row representing the probability of an up movement, the middle row representing the probability of a middle movement, and the last row the probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the structure, corresponding to the first (root) and second levels of the tree.

HWTree. Probs \{1\}
0.1666666666667
0.6666666666667
0.1666666666667

HWTree.Probs $\{2\}$		
0.12361333418768	0.16666666666667	0.21877591615172
0.65761074966060	0.66666666666667	0.65761074966060
0.21877591615172	0.16666666666667	0.12361333418768

Reading from top to bottom, the values in HWTree.Probs\{1\} correspond to the up, middle, and down probabilities at the root node.

HWTree. Probs $\{2\}$ is a 3 -by- 3 matrix of values. The first column represents the top node, the second column represents the middle node, and the last column represents the bottom node. As with the root node, the first, second, and third rows hold the values for up, middle, and down branching off each node.

As expected, the sum of all the probabilities at any node equals 1.

```
sum(HWTree.Probs{2})
```

$1.0000 \quad 1.0000 \quad 1.0000$
Connect Field. The other field that distinguishes HW and BK tree structures from the BDT tree structure is Connect. This field describes how each node in a given level connects to the nodes of the next level. The need for this field arises from the possibility of nonstandard branching in a tree.

The Connect field of the HW tree structure consists of a cell array with one cell per tree level.

```
HWTree.Connect
ans =
    [2] [1x3 double] [1x5 double]
```

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to a node in the corresponding tree level and represents the index of the node in the next tree level that the middle branch of the node connects to.

If you subtract 1 from the values contained in Connect, you reveal the index of the nodes in the next level that the up branch connects to. If you add 1 to the values, you reveal the index of the corresponding down branch.

As an illustration, consider HWTree. Connect \{1\}:
HWTree. Connect \{1\}
ans =

2
This indicates that the middle branch of the root node connects to the second (from the top) node of the next level, as expected. If you subtract 1 from this value, you obtain 1 , which tells you that the up branch goes to the top node. If you add 1 , you obtain 3 , which points to the last node of the second level of the tree.

Now consider level 3 in this example:
HWTree. Connect \{3\}
$\begin{array}{lllll}2 & 2 & 3 & 4 & 4\end{array}$
On this level there is nonstandard branching. This can be easily recognized because the middle branch of two nodes is connected to the same node on the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third level of the tree, on the top and bottom nodes. The first and second nodes connect to the same trio of nodes on the next level. Similar branching occurs at the bottom and next-to-bottom nodes of the tree.

Computing Prices and Sensitivities Using Interest-Rate Models

This section explains how to use the Financial Derivatives Toolbox to compute prices and sensitivities of several financial instruments. See

- "Computing Instrument Prices" on page 2-49 for a discussion of using the pricing functions to compute prices for a portfolio of instruments.
- "Computing Instrument Sensitivities" on page 2-58 for a discussion of using the sensitivity functions to compute delta, gamma, and vega portfolio sensitivities.

Note For purposes of illustration this section relies on the HJM and BDT models. The HW and BK functions that perform price and sensitivity computations are not explicitly shown here. Functions that use the HW and BK models operate similarly to the BDT model.

Computing Instrument Prices

The portfolio pricing functions hjmprice and bdtprice calculate the price of any set of supported instruments, based on an interest-rate tree. The functions are capable of pricing these instrument types:

- Bonds
- Bond options
- Arbitrary cash flows
- Fixed-rate notes
- Floating-rate notes
- Caps
- Floors
- Swaps

For example, the syntax for calling hjmprice is
[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

Similarly, the calling syntax for bdtprice is

```
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)
```

Each function requires two input arguments: the interest-rate tree and the set of instruments, InstSet. An optional argument Options further controls the pricing and the output displayed. (See Appendix A, "Derivatives Pricing Options" for information about the Options argument.)

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process, created using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an interest-rate process, created using bdttree. See "Building a Tree of Forward Rates" on page 2-29 to learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the set of instruments to be priced independently using the model. Chapter 1, "Getting Started", explains how to create this variable.

Options is an options structure created with the function derivset. This structure defines how the tree is used to find the price of instruments in the portfolio, and how much additional information is displayed in the command window when calling the pricing function. If this input argument is not specified in the call to the pricing function, a default Options structure is used. The pricing options structure is described in "Pricing Options Structure" on page A-2.

The portfolio pricing functions classify the instruments and call the appropriate instrument-specific pricing function for each of the instrument types. The HJM instrument-specific pricing functions are bondbyhjm, cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, and swapbyhjm. A similarly named set of functions exists for BDT models. For a list of these, see "Price and Sensitivity from Black-Derman-Toy Trees" on page 5-3.

You can also use these functions directly to calculate the price of sets of instruments of the same type. See the documentation for these individual functions for further information.

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.
whos

Name	Size	Bytes	Class
BDTInstSet	1×1	15956	struct array
BDTTree	1×1	5138	struct array
BKInstSet	1×1	15946	struct array
BKTree	1×1	5904	struct array
CRRInstSet	1×1	12434	struct array
CRRTree	1×1	5058	struct array
EQPInstSet	1×1	12434	struct array
EQPTree	1×1	5058	struct array
HJMInstSet	1×1	15948	struct array
HJMTree	1×1	5838	struct array
HWInstSet	1×1	15946	struct array
HWTree	1×1	5904	struct array
ZeroInstSet	1×1	10282	struct array
ZeroRateSpec	1×1	1580	struct array

HJMTree and HJMInstSet are the input arguments needed to call the function hjmprice.

Use the function instdisp to examine the set of instruments contained in the variable HJMInstSet.

```
instdisp(HJMInstSet)
```

Index	Type	CouponRate	Settle	Maturity	Period B	Basis	Name		Quantity		
1	Bond	0.04	01-Jan-2000	01-Jan-2003	1 N	NaN	.4\% bond		100		
2	Bond	0.04	01-Jan-2000	01-Jan-2004	2 N	NaN...	. 4 \% bond		50		
Index	Type	UnderInd	OptSpec Str	ike ExerciseD	Dates Ame	ericanOpt	t Name		Quantity		
3	OptBo	nd 2	call 101	01-Jan-200	003 NaN		Option 101		-50		
Index	Type	CouponRate	Settle	Maturity	FixedReset Basis Principal Name Quantity						
4	Fixed	0.04	01-Jan-2000	01-Jan-2003		NaN	NaN	4\% Fixed 80			
Index	Type	Spread Set	tle Mat	Maturity FloatReset B		Basis Prin	incipal Name	e Quantity			
5	Float	20 01-	Jan-2000 01-	Jan-2003 1		NaN NaN	N 20BP	Float 8			
Index	Type	Strike Sett		aturity	CapReset Basis Principal Name Quantity						
6	Cap	0.03 01-J	an-2000 0	1-Jan-2004		$\mathrm{NaN} \quad \mathrm{N}$	NaN 3	3\% Cap 30			
Index	Type	Strike Set	tle Mat	urity	FloorReset	t Basis P	Principal Na	Name		Quantity	
7	Floor	0.03 01-	Jan-2000 01-	Jan-2004	1 NaN		NaN 3	3\% Floor 40			
Index	Type	LegRate S	ettle M	aturity	LegReset B	Basis Principal LegType			Name 6\%/20BP Swap		Quantity
8	Swap	[0.06 20] 0	1-Jan-2000 0	1-Jan-2003	[1 1] ${ }^{1}$	NaN NaN	[NaN]				10

Note that there are eight instruments in this portfolio set: two bonds, one bond option, one fixed rate note, one floating rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument set.

```
Price = hjmprice(HJMTree, HJMInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
```

Price =
98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

Note The warning shown above appears because some of the cash flows for the second bond do not fall exactly on a tree node.

BDT Pricing Example

Load the MAT-file deriv.mat into the MATLAB workspace.
load deriv.mat
Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

whos			
Name	Size	Bytes	Class
BDTInstSet	1×1	15956	struct array
BDTTree	1×1	5138	struct array
BKInstSet	1×1	15946	struct array
BKTree	1×1	5904	struct array
CRRInstSet	1×1	12434	struct array
CRRTree	1×1	5058	struct array
EQPInstSet	1×1	12434	struct array
EQPTree	1×1	5058	struct array
HJMInstSet	1×1	15948	struct array
HJMTree	1×1	5838	struct array
HWInstSet	1×1	15946	struct array
HWTree	1×1	5904	struct array
ZeroInstSet	1×1	10282	struct array
ZeroRateSpec	1×1	1580	struct array

BDTTree and BDTInstSet are the input arguments needed to call the function bdtprice.

Use the function instdisp to examine the set of instruments contained in the variable BDTInstSet.

```
instdisp(BDTInstSet)
```


Note that there are eight instruments in this portfolio set: two bonds, one bond option, one fixed rate note, one floating rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument set.

```
Price = bdtprice(BDTTree, BDTInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
```

Price $=$
95.5030
93.9079
1.7657
95.5030
100.4865
1.4863
0.0245
7.4222

Price Vector Output

The prices in the output vector Price correspond to the prices at observation time zero (tObs $=0$), which is defined as the valuation date of the interest-rate tree. The instrument indexing within Price is the same as the indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(HJMInstSet, 'FieldName','Name')
InstNames =
4% bond
4% bond
Option 101
4% Fixed
20BP Float
3% Cap
3% Floor
6%/20BP Swap
```

Consequently, in the Price vector, the fourth element, 98.7159, represents the price of the fourth instrument (4% fixed-rate note); the sixth element, 6.2831, represents the price of the sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(BDTInstSet, 'FieldName','Name')
InstNames =
10% Bond
10% Bond
Option 95
10% Fixed
20BP Float
15% Cap
```

```
9% Floor
15%/10BP Swap
```

Consequently, in the Price vector, the fourth element, 95.5030, represents the price of the fourth instrument (10% fixed-rate note); the sixth element, 1.4863, represents the price of the sixth instrument (15% cap).

Price Tree Structure Output

If you call a pricing function with two output arguments, for example,

```
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)
```

you generate a price tree along with the price information.
The optional output price tree structure PriceTree holds all the pricing information.

HJM Price Tree. In the HJM example, the first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PBush, is the tree holding the price of the instruments in each node of the tree. The third field, AIBush, is the tree holding the accrued interest of the instruments in each node of the tree. Finally, the fourth field, tObs, represents the observation time of each level of PBush and AIBush, with units in terms of compounding periods.

In this example the price tree looks like

```
PriceTree =
FinObj: 'HJMPriceTree'
    PBush: {[8x1 double] [8x1x2 double] ...[8x8 double]}
AIBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
    tObs: [0 1 1 2 3 4]
```

Both PBush and AIBush are actually 1-by-5 cell arrays, consistent with the five observation times of tObs. The data display has been shortened here to fit on a single line.

Using the command line interface, you can directly examine PriceTree.PBush, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tObs $=0$, corresponding to the valuation date.

```
PriceTree.PBush{1}
```

98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

With this interface you can observe the prices for all instruments in the portfolio at a specific time.

BDT Price Tree. The BDT output price tree structure PriceTree holds all the pricing information. The first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree, is the tree holding the price of the instruments in each node of the tree. The third field, AITree, is the tree holding the accrued interest of the instruments in each node of the tree. The fourth field, tObs, represents the observation time of each level of PTree and AITree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which contains the price tree with the price vectors at every state. The first node represents tObs $=0$, corresponding to the valuation date.

```
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)
PriceTree.PTree{1}
ans =
    95.5030
    93.9079
        1.7657
        95.5030
        100.4865
            1.4863
            0.0245
            7.4222
```


Computing Instrument Sensitivities

The toolbox reports sensitivities either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega sensitivities of instruments using an interest-rate tree. They also optionally return the calculated price for each instrument. The sensitivity functions require the same two input arguments used by the pricing functions (HJMTree and HJMInstSet for HJM; BDTTree and BDTInstSet for BDT).

Sensitivity functions calculate the dollar value of delta and gamma by shifting the observed forward yield curve by 100 basis points in each direction, and the dollar value of vega by shifting the volatility process by 1%. To obtain the per-dollar value of the sensitivities, divide the dollar sensitivity by the price of the corresponding instrument.

HJM Sensitivities Example

The calling syntax for the function is

```
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)
```

Use the previous example data to calculate the price of instruments.

```
load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
```

Note The warning appears because some of the cash flows for the second bond do not fall exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

```
All = [Delta, Gamma, Vega, Price]
All =
```

-272.65	1029.90	0.00	98.72
-347.43	1622.69	-0.04	97.53
-8.08	643.40	34.07	0.05
-272.65	1029.90	0.00	98.72
-1.04	3.31	0	100.55
294.97	6852.56	93.69	6.28
-47.16	8459.99	93.69	0.05
-282.05	1059.68	0.00	3.69

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in HJMInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

BDT Sensitivities Example

The calling syntax for the function is
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);
Arrange the sensitivities and prices into a single matrix.

All $=$			
-232.67	803.71	-0.00	95.50
-281.05	1181.93	-0.01	93.91
-50.54	246.02	5.31	1.77
-232.67	803.71	0	95.50
0.84	2.45	0	100.49
78.38	748.98	13.54	1.49
-4.36	382.06	2.50	0.02
-253.23	863.81	0	7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

```
All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
```

```
All =
-2.44
-28.63
    -2.44
8.42
0.02
503.92
8.42
-0.00
95.50
-2.99
\(-28.63\)
-2.44
12.59
-0.00
93.91
0.01
52.73
-177.89
-34.12
15577.42
1.77
3.01
0
95.50
\(0 \quad 100.49\)
9.11
1.49
116.38
0.02
7.42
```


Graphical Representation of Trees

You can use the function treeviewer to display a graphical representation of a tree, allowing you to examine interactively the prices and rates on the nodes of the tree until maturity. To get started with this process, first load the data file deriv.mat included in this toolbox.
load deriv.mat

Note treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).

For information on the use of treeviewer to observe interest rate movement, see "Observing Interest Rates" on page 2-61. For information on using treeviewer to observe the movement of prices, see "Observing Instrument Prices" on page 2-65.

Observing Interest Rates

If you provide the name of an interest rate tree to the treeviewer function, it displays a graphical view of the path of interest rates. For example, here is treeviewer representation of all the rates along both the up and down branches of HJMTree.

```
treeviewer(HJMTree)
```


A previous example used bushpath to find the path of forward rates along an HJM tree by taking the first branch up and then two branches down the rate tree.

```
FRates = bushpath(HJMTree.FwdTree, [1 2 2])
FRates =
    1.0356
    1.0364
    1.0526
    1.0674
```

With the treeviewer function you can display the identical information by clicking along the same sequence of nodes, as shown next.

Next is a treeviewer representation of interest rates along several branches of BDTTree.

Note When using treeviewer with recombining trees, such as BDT, BK, and HW, you must click on each node in succession from the beginning to the end. Because these trees can recombine, treeviewer is unable to complete the path automatically.

A previous example used treepath to find the path of interest rates taking the first branch up and then two branches down the rate tree.

```
FRates = treepath(BDTTree.FwdTree, [llll
FRates =
```

 1.1000
 1.0979
 1.1377
 1.1606
 You can display the identical information by clicking along the same sequence of nodes, as shown next.

Observing Instrument Prices

To use treeviewer to display a tree of instrument prices, provide the name of an instrument set along with the name of a price tree in your call to treeviewer, for example:

```
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)
```

With treeviewer you select each instrument individually in the instrument portfolio for display.

You can use an analogous process to view instrument prices based upon the BDT interest rate tree included in deriv.mat.

```
load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(BDTPriceTree, BDTInstSet)
```


Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument prices through time. For the first 4% bond in the HJM instrument portfolio, treeviewer indicates a valuation date price of 98.72 , the same value obtained by accessing the PriceTree structure directly.

As a further example, look at the sixth instrument in the price vector, the 3% cap. At the valuation date its value obtained directly from the structure is 6.2831. Use treeviewer on this instrument to confirm this price.

Additional Observation Times

The second node represents the first rate observation time, tObs $=1$. This node displays two states, one representing the branch going up and the other one representing the branch going down.

Examine the prices of the node corresponding to the up branch.

```
ans =
    100.1563
    99.7309
        0.1007
    100.1563
    100.3782
        3.2594
        0.1007
        3.5597
```

PriceTree.PBush\{2\}(:, : , 1)

As before, you can use treeviewer, this time to examine the price for the 4% bond on the up branch. treeviewer displays a price of 100.2 for the first node of the up branch, as expected.

Now examine the corresponding down branch.

```
PriceTree.PBush{2}(:,:,2)
ans =
```

96.3041
94.1986

0
96.3041
100.3671
8.6342

0
-0.3923

Use treeviewer once again, now to observe the price of the 4% bond on the down branch. The displayed price of 96.3 conforms to the price obtained from direct access of the PriceTree structure. You may continue this process as far along the price tree as you want.

Equity Derivatives

Understanding Equity Binary Trees (p. 3-2)
Understanding Equity Exotic Options (p. 3-11)

Computing Prices and Sensitivities for Equity Derivatives (p. 3-15)

CRR and EQP equity pricing models.

Asian, barrier, compound, and lookback exotic options. Also, American, European and Bermuda put and call options on equities.

Use of crrprice and eqpprice to compute the prices of vanilla options and exotic options.

Understanding Equity Binary Trees

The Financial Derivatives Toolbox supports two types of recombining tree models to represent the evolution of stock prices: the Cox-Ross-Rubinstein (CRR) model and the Equal Probabilities (EQP) model. For a discussion of recombining trees, see "Rate and Price Trees" on page 2-5.

The CRR and EQP models are examples of discrete time models. A discrete time model divides time into discrete bits, and prices can be computed at these specific times only.

The CRR model is one of the most common methods used to model the evolution of stock processes. The strength of the CRR model lies in its simplicity. It is a good model when dealing with a large number of tree levels. The CRR model yields the correct expected value for each node of the tree and provides a good approximation for the corresponding local volatility. The approximation becomes better as the number of time steps represented in the tree is increased.

The EQP model is another discrete time model. It has the advantage of building a tree with the exact volatility in each tree node, even with small numbers of time steps. It also provides better results than CRR in some given trading environments, e.g., when stock volatility is low and interest rates are high. However, this additional precision causes increased complexity, which is reflected in the number of calculations required to build a tree.

This section

- Describes how to build equity binary trees ("Building Equity Binary Trees" on page 3-2)
- Provides examples of equity tree creation ("Examples of Equity Tree Creation" on page 3-6)
- Uses the provided file deriv.mat to show how to examine trees ("Examining Trees" on page 3-8)
- Explains the difference between the CRR and EQP tree structures ("Differences Between CRR and EQP Tree Structures" on page 3-10)

Building Equity Binary Trees

The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over a given period of time. The MATLAB functions crrtree and eqptree create CRR trees and EQP trees respectively. The functions create
an output tree structure along with information about the parameters used for creating the tree.

Both the functions crrtree and eqptree take three structures as input arguments:

- The stock parameter structure StockSpec
- The interest-rate term structure RateSpec
- The tree time layout structure TimeSpec

Calling Sequence

The calling syntax for crrtree is

```
CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)
```

Similarly, the calling syntax for eqptree is

```
EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)
```

Both functions require the structures StockSpec, RateSpec, and TimeSpec as input arguments:

- StockSpec is a structure that specifies parameters of the stock whose price evolution will be represented by the tree. This structure, created using the function stockspec, contains information such as the stock's original price, its volatility, and its dividend payment information.
- RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the function intenvset.
- TimeSpec is the tree time layout specification. Create these structures with the functions crrtimespec and eqptimespec. The structures contain information regarding the mapping of relevant dates into the tree structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure

The structure StockSpec encapsulates the stock-specific information required for building the binary tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments and accepts up to three additional input arguments that depend upon the existence and type of dividend payments.

The syntax for calling stockspec is

```
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
```

where:

- Sigma is the decimal annual volatility of the underlying security.
- AssetPrice is the price of the stock at the valuation date.
- DividendType is a string specifying the type of dividend paid by the stock. Allowed values are 'cash', 'constant', or 'continuous'.
- DividendAmounts has a value that depends upon the specification of DividendType. For DividendType 'cash', DividendAmounts is a vector of cash dividends. For DividendType 'constant', it is a vector of constant annualized dividend yields. For DividendType 'continuous', it is a scalar representing a continuously annualized dividend yield.
- ExDividendDates also has a value that depends upon the nature of DividendType. For DividendType 'cash' or 'constant', ExDividendDates is vector of dividend dates. For DividendType 'continuous', ExDividendDates is ignored.

Stock Structure Example

Consider a stock with a price of $\$ 100$ and an annual volatility of 15%. Assume that the stock pays three cash $\$ 5.00$ dividends on dates January 01, 2003; July 01,2003 ; and January 01, 2004. You specify these parameters in MATLAB as

Sigma = 0.15;
AssetPrice = 100;
DividendType = 'cash';
DividendAmounts = [5; 5; 5];
ExDividendDates = \{'jan-01-2004', 'july-01-2005', 'jan-01-2006' $\}$;
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

```
StockSpec =
```

```
            FinObj: 'StockSpec'
                    Sigma: 0.1500
            AssetPrice: 100
            DividendType: 'cash'
DividendAmounts: [3x1 double]
ExDividendDates: [3x1 double]
```


Specifying the Interest-Rate Term Structure

The structure RateSpec defines the interest rate environment used when building the stock price binary tree. The section "Functions That Model the Interest-Rate Term Structure" on page 2-18 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree Time Term Structure

The TimeSpec structure defines the tree layout of the binary tree:

- It maps the valuation and maturity dates to their corresponding times.
- It defines the time of the levels of the tree by dividing the time span between valuation and maturity into equally spaced intervals. By specifying the number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)
where:

- ValuationDate is a scalar date marking the pricing date and first observation in the tree (location of the root node). You enter ValuationDate either as a serial date number (generated with datenum) or a date string.
- Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a date string.
- NumPeriods is a scalar defining the number of time steps in the tree, e.g., NumPeriods $=10$ implies ten time steps and 11 tree levels ($0,1,2, \ldots, 9,10$).

TimeSpec Example

Consider building a CRR tree, with a valuation date of January 1, 2003; a maturity date of January 1, 2008; and 20 time steps. You specify these parameters in MATLAB as:

```
ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
NumPeriods = 20;
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec =
```

FinObj:	'BinTimeSpec'
ValuationDate:	731582
Maturity:	733408
NumPeriods:	20
Basis:	0
EndMonthRule:	
tObs: $[1 \times 21$ double]	
dObs: $[1 \times 21$ double]	

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two fields represent the observation times and corresponding dates of all tree levels, with dObs (1) and tObs (1), respectively, representing the root node (ValuationDate), and dObs (end) and tObs (end) representing the last tree level (Maturity).

Note There is no relationship between the dates specified for the tree and the implied tree level times, and the maturities specified in the interest rate term structure. The rates in RateSpec are interpolated or extrapolated as needed to meet the time distribution of the tree.

Examples of Equity Tree Creation

You can now use the StockSpec and TimeSpec structures described previously to build an equal probability tree (EQPTree) and a CRR tree (CRRTree). First, you need to define the interest rate term structure. For this example assume that the interest rate is fixed at 10% annually between the valuation date of the tree (January 1, 2003) until its maturity.

```
ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
Rate = 0.1;
RateSpec = intenvset('Rates', Rate, 'StartDates', ...
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);
```

To build a CRRTree enter

```
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)
CRRTree =
```

 FinObj: 'BinStockTree'
 Method: 'CRR'
 StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [1x21 double]
dObs: [1x21 double]
STree: \{1x21 cell\}
UpProbs: [1x20 double]

To build an EQPTree enter

```
EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
EQPTree =
```

 FinObj: 'BinStockTree'
 Method: 'EQP'
 StockSpec: [1x1 struct]
 TimeSpec: [1x1 struct]
 RateSpec: [1x1 struct]
 tObs: [1x21 double]
 dObs: [1x21 double]
 STree: \{1x21 cell\}
 UpProbs: [1x20 double]

Examining Trees

The Financial Derivatives Toolbox uses trees to represent prices of equity options and of underlying stocks. At the highest level, these trees have structures wrapped around them. The structures encapsulate information needed to interpret the information contained in the tree.

To examine a tree, load the data in the MAT-file deriv.mat into the MATLAB workspace.

```
load deriv
```

Display the list of variables loaded from the MAT-file with the whos command.

Name	Size	Bytes \quad Class	
BDTInstSet	1×1	15956	struct array
BDTTree	1×1	5138	struct array
CRRInstSet	1×1	12450	struct array
CRRTree	1×1	5058	struct array
EQPInstSet	1×1	12450	struct array
EQPTree	1×1	5058	struct array
HJMInstSet	1×1	15948	struct array
HJMTree	1×1	5838	struct array
ZeroInstSet	1×1	10282	struct array
ZeroRateSpec	1×1	1580	struct array

You can now examine in some detail the contents of the CRRTree structure contained in this file.

```
CRRTree
    FinObj: 'BinStockTree'
    Method: 'CRR'
StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
            tObs: [00 1 1 2 3 4
            dObs: [l731582 731947 732313 732678 733043]
        STree: {[100] [110.5171 90.4837] [122.1403 100 81.8731]
                [1x4 double] [1x5 double]}
        UpProbs: [0.7309 0.7309 0.7309 0.7309]
```

The Method field of the structure indicates that this is a CRR tree, not an EQP tree.

The fields StockSpec, TimeSpec and RateSpec hold the original structures passed into the function crrtree. They contain all the context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates, the times and dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of four years (tObs (end) $=4$) and that it has four time steps (the length of tobs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day. This means that all values in tObs that correspond to a given day between 00:00 hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial dates into their string representations.

The field UpProbs is a vector representing the probabilities for up movements from any node in each level. This vector has one element per tree level. All nodes for a given level have the same probability of an up movement. In the specific case being examined, the probability of an up movement is 0.7309 for all levels, and the probability for a down movement is 0.2691 (1-0.7309).

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array with each cell array element containing a vector of prices corresponding to a tree level. The prices are in descending order, that is, CRRTree.STree $\{3\}$ (1) represents the top-most element of the third level of the tree, and CRRTree.STree\{3\} (end) represents the bottom element of the same level of the tree.

Isolating a Specific Node

The function treepath can isolate a specific set of nodes of a binary tree by specifying the path used to reach the final node. As an example, consider the nodes touched by starting from the root node, then following a down movement, then an up movement, and finally a down movement. You use a vector to specify the path, with 1 corresponding to an up movement and 2 corresponding to a down movement. An up-down-up path is then represented as [2llll. 12 obtain the values of all nodes touched by this path

```
SVals = treepath(CRRTree.STree, [2 1 2])
SVals =
100.0000
90.4837
100.0000
90.4837
```

The first value in the vector SVals corresponds to the root node, and the last value corresponds to the final node reached by following the path indicated.

Differences Between CRR and EQP Tree Structures

In essence, the structures representing CRR trees and EQP trees are similar. If you create an EQP tree and a CRR tree using identical input arguments, only a few of the tree structure fields differ:

- The Method field has a value of 'CRR' or 'EQP' indicating the method used to build the structure.
- The prices in the STree cell array have the same structure, but the prices within the cell array are different.
- For EQP the structure field UpProb always holds a vector with all elements set to 0.5 , while for CRR, these probabilities are calculated based on the input arguments passed when building the tree.

Understanding Equity Exotic Options

The Financial Derivatives Toolbox supports five types of equity exotic options:

- Asian
- Barrier
- Compound
- Lookback
- Stock options (Bermuda put and call schedule).

Support for all of these equity exotic option types additionally includes American and European puts and calls. Here is a brief description of the various option types.

Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying asset during the life (or some part of the life) of the option. They are similar to lookback options in that there are two types of Asian options: fixed (average price option) and floating (average strike option). Fixed Asian options have a specified strike, while floating Asian options have a strike equal to the average value of the underlying asset over the life of the option. There are four Asian options types, each with its own characteristic payoff formula:

- Fixed call: $\max \left(0, S_{a v}-X\right)$
- Fixed put: $\max \left(0, X-S_{a v}\right)$
- Floating call: $\max \left(0, S-S_{a v}\right)$
- Floating put: $\max \left(0, S_{a v}-S\right)$
where
$S_{a v}$ is the average price of underlying stock found along the particular path followed to the node.
S is the price of the underlying stock on the node.
X is the strike price (applicable only to fixed asian options),
$S_{a v}$ can be defined using either a geometric or an arithmetic average.

Barrier Option

A barrier option is similar to a vanilla put or call option, but its life either begins or ends when the price of the underlying stock passes a predetermined barrier value. There are four types of barrier options:

Up Knock-in

This option becomes effective when the price of the underlying stock passes above a barrier that is above the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of the underlying instrument moves below the barrier again.

Up Knock-out

This option terminates when the price of the underlying stock passes above a barrier that is above the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the underlying instrument moves below the barrier again.

Down Knock-in

This option becomes effective when the price of the underlying stock passes below a barrier that is below the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of the underlying instrument moves above the barrier again.

Down Knock-out

This option terminates when the price of the underlying stock passes below a barrier that is below the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the underlying instrument moves above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option. Knock-outs may pay a rebate when they are knocked out, and knock-ins may pay a rebate if they expire without ever knocking in.

Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell another option. With a compound option, a vanilla stock option serves as the underlying instrument. Compound options thus have two strike prices and two exercise dates.

There are four types of compound options:

- Call on a call
- Put on a put
- Call on a put
- Put on a call

Note The payoff formulas for compound options are too complex for this discussion. If you are interested in the details, consult the paper by Mark Rubinstein entitled "Double Trouble," published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a put option. In this case, on the first exercise date, the holder of the compound option is allowed to pay the first strike price and receive a put option. The put option gives the holder the right to sell the underlying asset for the second strike price on the second exercise date.

Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the underlying asset achieves during the entire life of the option.
The Financial Derivatives Toolbox supports two types of lookback options: fixed and floating. Fixed lookback options have a specified strike price, while floating lookback options have a strike price determined by the asset path. Consequently, there are a total of four lookback option types, each with its own characteristic payoff formula:

- Fixed call: $\max \left(0, S_{\max }-X\right)$
- Fixed put: $\max \left(0, X-S_{\min }\right)$
- Floating call: $\max \left(0, S-S_{\min }\right)$
- Floating put: $\max \left(0, S_{\max }-S\right)$
where
$S_{\text {max }}$ is the maximum price of underlying stock found along the particular path followed to the node.
$S_{\text {min }}$ is the minimum price of underlying stock found along the particular path followed to the node.
S is the price of the underlying stock on the node.
X is the strike price (applicable only to fixed lookback options).

Bermuda Put and Call Schedule

A Bermuda option is somewhat like a hybrid of American and European options. It can be exercised on predetermined dates only, usually once a month. In the Financial Derivatives Toolbox, the relevant information for a Bermuda option is indicated in two input matrices:

Strike: contains the strike price values for the option.
ExcerciseDates: contains the schedule when the option can be exercised.

Computing Prices and Sensitivities for Equity Derivatives

This section explains how to use the Financial Derivatives Toolbox to compute prices and sensitivities of vanilla options and several types of equity exotic options, based on binary trees. For information see

- "Computing Instrument Prices" on page 3-15 for a discussion of using the pricing functions to compute prices for a portfolio of equity options.
- "Computing Instrument Sensitivities" on page 3-22 for a discussion of using the sensitivity functions to compute delta, gamma, and vega sensitivities for a portfolio of equity options.

Computing Instrument Prices

The portfolio pricing functions crrprice and eqpprice calculate the price of any set of supported instruments based on a binary equity price tree. These functions are capable of pricing these instrument types:

- Vanilla stock options
- America and European puts and calls
- Exotic options
- Asian
- Barrier
- Compound
- Lookback
- Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is

```
[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)
```

Similarly, the syntax for eqpprice is

```
[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
```

Both functions require two input arguments: the equity price tree and the set of instruments, InstSet, and allow a third optional argument.

Required Arguments

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an equal probability equity price tree created using eqptree. See "Building Equity Binary Trees" on page 3-2 to learn how to create these structures.

InstSet is a structure that represents the set of instruments to be priced independently using the model. Chapter 1 "Getting Started" explains how to create this variable.

Optional Argument

You can enter a third optional argument, Options, used when pricing barrier options. See Appendix A, "Derivatives Pricing Options" for more specific information.

These pricing functions internally classify the instruments and call the appropriate individual instrument pricing function for each of the instrument types. The CRR pricing functions are asianbycrr, barrierbycrr, compoundbycrr, lookbackbycrr, and optstockbycrr. A similar set of functions exists for EQP pricing. You can also use these functions directly to calculate the price of sets of instruments of the same type. See the reference pages for these individual functions for further information.

Computing Prices Using CRR

Consider the following example, which uses the portfolio and stock price data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

Name	Size	Bytes	Class
BDTInstSet	1×1	15956	struct array
BDTTree	1×1	5138	struct array
CRRInstSet	1×1	12450	struct array
CRRTree	1×1	5058	struct array
EQPInstSet	1×1	12450	struct array
EQPTree	1×1	5058	struct array
HJMInstSet	1×1	15948	struct array

HJMTree	1×1	5838	struct array
ZeroInstSet	1×1	10282	struct array
ZeroRateSpec	1×1	1580	struct array

CRRTree and CRRInstSet are the input arguments you need to call the function crrprice.

Use the command instdisp to examine the set of instruments contained in the variable CRRInstSet.

```
instdisp(CRRInstSet)
```

Index	Type	OptSpec	Strike	Settle		Exercis	seDates	AmericanOpt	Name	Quantity			
1	OptStock	call	105	01-Jan-	2003	01-Jan	-2005	1	Call1	10			
2	OptStock	put	105	01-Jan-	2003	01-Jan	-2006	0	Put1	5			
Index	Type 0	OptSpec Strike Settle				rciseDa	AmericanOpt Bar			$\begin{aligned} & \text { Barrier } \\ & 102 \end{aligned}$		Rebate Name	Quantity
3	Barrier c	call	105	01-Jan-2	003 01-	Jan-2006	61	ui				0 Barr	ier1 1
Index	Type	UOptSpec	c COp	OptSpec	CStrike	CSettl		CExerciseDa	es CAm	merica	Opt	Name	Quantity
4	Compound	callpu	ut	5	01-Jan	-2003	01-Jan-2005	1			Compound1	3
Index	Type	OptSpec	Strike	Settle		Exercis	seDates	AmericanOpt	Name	Qu	nti	ity	
5	Lookback	call	115	01-Jan-	2003	01-Jan	-2006	0	Lookba	ack1 7			
6	Lookback	call	115	01-Jan-	2003	01-Jan	-2007	0	Lookba	ack2 9			
Index	Type Opt	tSpec Str	rike Se	ttle	Exercis	seDates	America	nOpt AvgType	Avg	Price	AvgD	Date Name	Quantity
7	Asian put	$t 110$	01-J	Jan-2003	01-Jan-	-2006	0	arithme	tic NaN		NaN	Asian1	4
8	Asian put	t 110	01-J	an-2003	01-Jan-	-2007	0	arithmet	tic NaN		NaN	Asian2	6

Note Because of space considerations, the compound option above (Index 4) has been condensed to fit the page. The instdisp command displays all compound option fields on your computer screen.

The instrument set contains eight instruments:

- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options(Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument set.

```
Price = crrprice(CRRTree, CRRInstSet)
Price =
```

 8.2863
 2.5016
 12.1272
 3.3241
 7.6015
 11.7772
 4.1797
 3.4219

Computing Prices Using EQP

Load the data into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

Name	Size	Bytes Class	
BDTInstSet	1×1	15956	struct array
BDTTree	1×1	5138	struct array
CRRInstSet	1×1	12450	struct array
CRRTree	1×1	5058	struct array
EQPInstSet	1×1	12450	struct array
EQPTree	1×1	5058	struct array
HJMInstSet	1×1	15948	struct array
HJMTree	1×1	5838	struct array
ZeroInstSet	1×1	10282	struct array
ZeroRateSpec	1×1	1580	struct array

EQPTree and EQPInstSet are the input arguments you need to call the function eqpprice.

Use the command instdisp to examine the set of instruments contained in the variable EQPInstSet.
instdisp(EQPInstSet)

Index	Type	OptSpec	Strike	Settle			Exercis	seDates	AmericanOpt Name Quantity					
1	OptStock	call	105	01-Jan-	2003		01-Jan	-2005	1	Call1	10			
2	OptStock	put	105	01-Jan-	2003		01-Jan	-2006	0	Put1	5			
Index	Type Op	OptSpec Strike Settle				ExerciseDates American0pt BarrierSpec					Barri	ier Rebat	te Name	Quantity
3	Barrier cal	call	105	01-Jan-2003		01-J	Jan-2006	61	ui		102	0	Barr	ier1 1
Index	Type	UOptSpecCOp		OptSpec	CStr	ike	CSettle		CExerciseDates CAmericanOpt 01-Jan-2005 1			Opt Name		Quantity
4	Compound	call	. pu		5		01-Jan	-2003				Comp	ound1	3
Index	Type	OptSpec	Strike	Settle			Exercis	seDates	AmericanOpt	Name	Qu	ntity		
5	Lookback	call	115	01-Jan-	2003		01-Jan	-2006	0	Lookba	ack1 7			
6	Lookback	call	115	01-Jan-	2003		01-Jan	-2007	0	Lookba	ack2 9			
Index	Type Opt	tSpec Str	rike Set	ttle	Exe	rcis	seDates	America	anOpt AvgType	Avg	Price	AvgDate	Name	Quantity
7	Asian put	t 110	01-J	an-2003	01	Jan-	-2006	0	arithme	tic NaN		NaN	Asian1	4
8	Asian put	$t 110$	01-J	an-2003	01	Jan-	-2007	0	arithme	tic NaN		NaN	Asian2	6

Note Because of space considerations, the compound option above (Index 4) has been condensed to fit the page. The instdisp command displays all compound option fields on your computer screen.

The instrument set contains eight instruments:

- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by eqpprice.

Now use eqpprice to calculate the price of each instrument in the instrument set.

```
Price = eqpprice(EQPTree, EQPInstSet)
Price =
    8.4791
    2.6375
    12.2632
    3.5091
    8.7941
    12.9577
    4.7444
    3.9178
```


Examining Output from the Pricing Functions

The prices in the output vector Price correspond to the prices at observation time zero ($\mathrm{tObs}=0$), which is defined as the valuation date of the equity tree. The instrument indexing within Price is the same as the indexing within InstSet.

In the CRR example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(CRRInstSet, 'FieldName','Name')
InstNames =
Call1
Put1
Barrier1
Compound1
Lookback1
Lookback2
Asian1
Asian2
```

Consequently, in the Price vector, the fourth element, 3.3241, represents the price of the fourth instrument (Compound1), and the sixth element, 11.7772, represents the price of the sixth instrument (Lookback2).

Price Tree Output

If you call a pricing function with two output arguments, e.g.,

```
[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)
```

you generate a price tree structure along with the price information.
This price tree structure PriceTree holds all pricing information.

```
PriceTree =
PriceTree =
    FinObj: 'BinPriceTree'
    PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double]
            [8x5 double]}
        tObs: [00 1 2 3 4]
        dObs: [731582 731947 732313 732678 733043]
```

The first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree is the tree holding the prices of the instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the observation time and date of each level of PTree, with tObs using units in terms of compounding periods.

Using the command line interface, you can directly examine PriceTree.PTree, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tObs $=0$, corresponding to the valuation date.

```
PriceTree.PTree{1}
ans =
    8.2863
    2.5016
    12.1272
    3.3241
    7.6015
    11.7772
    4.1797
    3.4219
```

With this interface you can observe the prices for all instruments in the portfolio at a specific time.

The function eqptree also returns a price tree that you can examine in exactly the same way.

Prices for Lookback and Asian Options

Lookback options and Asian options are path dependent, and, as such, there are no unique prices for any node except the root node. Consequently, the corresponding values for lookback and Asian options in the price tree are set to NaN , the only exception being the root node. This becomes apparent if you examine the prices in the second node (tobs $=1$) of the CRR price tree.

PriceTree.PTree\{2\}	
ans =	
11.9176	0
0.9508	7.1914
16.4600	2.6672
2.5896	5.0000
NaN	NaN

Computing Instrument Sensitivities

Sensitivities can be reported either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions crrsens and eqpsens compute the delta, gamma, and vega sensitivities of instruments using a stock tree. They also optionally return the calculated price for each instrument. The sensitivity functions require the same two input arguments used by the pricing functions (CRRTree and CRRInstSet for CRR, EQPTree and EQPInstSet for EQP).

As with the instrument pricing functions, the optional input argument Options is also allowed. You would include this argument if you want a sensitivity function to generate a price for a barrier option as one of its outputs and want
to control the method that the toolbox uses to perform the pricing operation. See Appendix A, "Derivatives Pricing Options" or the derivset function, for more information.

For path-dependent options (lookback and Asian), delta and gamma are computed by finite differences in calls to crrprice and eqpprice. For the other options (stock option, barrier, and compound), delta and gamma are computed from the CRR and EQP trees and the corresponding option price tree. (See Chriss, Neil, Black-Scholes and Beyond, pp 308-312.)

CRR Sensitivities Example

The calling syntax for the sensitivity function is

```
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)
```

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

```
load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);
```

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.
format bank
All = [Delta, Gamma, Vega, Price]

All =

0.59	0.04	53.45	8.29
-0.31	0.03	67.00	2.50
0.69	0.03	67.00	12.13
-0.12	-0.01	-98.08	3.32
-0.40	-45926.32	88.18	7.60
-0.42	-112143.15	119.19	11.78
0.60	45926.32	49.21	4.18
0.82	112143.15	41.71	3.42

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in CRRInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

```
All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
```

 All =
 | 0.07 | 0.00 | 6.45 | 8.29 |
| ---: | ---: | ---: | ---: |
| -0.12 | 0.01 | 26.78 | 2.50 |
| 0.06 | 0.00 | 5.53 | 12.13 |
| -0.04 | -0.00 | -29.51 | 3.32 |
| -0.05 | -6041.77 | 11.60 | 7.60 |
| -0.04 | -9522.02 | 10.12 | 11.78 |
| 0.14 | 10987.98 | 11.77 | 4.18 |
| 0.24 | 32771.92 | 12.19 | 3.42 |

Graphical Representation of CRR and EQP Trees

You can use the function treeviewer to display a graphical representation of a tree, allowing you to examine interactively the prices and rates on the nodes of the tree until maturity. The graphical representations of CRR and EQP trees are equivalent to those of Black-Derman-Toy (BDT) trees, given that they are all binary recombining trees. See "Graphical Representation of Trees" on page 2-61 for an overview on the use of treeviewer with CRR trees, EQP trees, and their corresponding option price trees. Follow the instructions for BDT trees.

Hedging Portfolios

Hedging (p. 4-2)
Hedging Functions (p. 4-3)
Specifying Constraints with ConSet (p. 4-15)
Hedging with Constrained Portfolios (p. 4-20)

Purpose of hedging.
Two hedging functions: hedgeopt and hedgeslf.
Constraints for hedgeopt and hedgeslf.

Examples of hedging with constrained portfolios.

Hedging

Hedging is an important consideration in modern finance. Whether or not to hedge, how much portfolio insurance is adequate, and how often to rebalance a portfolio are important considerations for traders, portfolio managers, and financial institutions alike.

If there were no transaction costs, financial professionals would prefer to rebalance portfolios continually, thereby minimizing exposure to market movements. However, in practice, the transaction costs associated with frequent portfolio rebalancing may be very expensive. Therefore, traders and portfolio managers must carefully assess the cost needed to achieve a particular portfolio sensitivity (e.g., maintaining delta, gamma, and vega neutrality). Thus, the hedging problem involves the fundamental tradeoff between portfolio insurance and the cost of such insurance coverage.

The major topics covered in this chapter include

- "Hedging Functions" on page 4-3
- "Specifying Constraints with ConSet" on page 4-15
- "Hedging with Constrained Portfolios" on page 4-20

Hedging Functions

The Financial Derivatives Toolbox offers two functions for assessing the fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It allocates an optimal hedge to satisfy either of two goals:

- Minimize the cost of hedging a portfolio given a set of target sensitivities
- Minimize portfolio sensitivities for a given set of maximum target costs
hedgeopt allows investors to modify portfolio allocations among instruments according to either of the goals. The problem is cast as a constrained linear least squares problem. For additional information about hedgeopt, see "Hedging with hedgeopt" on page 4-4.

The second function, hedgeslf, attempts to allocate a self-financing hedge among a portfolio of instruments. In particular, hedgeslf attempts to maintain a constant portfolio value consistent with reduced portfolio sensitivities (i.e., the rebalanced portfolio is hedged against market moves and is closest to being self-financing). If hedgeslf cannot find a self-financing hedge, it rebalances the portfolio to minimize overall portfolio sensitivities. For additional information on hedgeslf, see "Self-Financing Hedges with hedgeslf" on page 4-11.

The examples in this section consider the delta, gamma, and vega sensitivity measures. In this toolbox, when you work with interest-rate derivatives, delta is the price sensitivity measure of shifts in the forward yield curve, gamma is the delta sensitivity measure of shifts in the forward yield curve, and vega is the price sensitivity measure of shifts in the volatility process. See bdtsens or hjmsens for details on the computation of sensitivities for interest-rate derivatives.

For equity exotic options, the underlying instrument is the stock price instead of the forward yield curve. Consequently, delta now represents the price sensitivity measure of shifts in the stock price, gamma is the delta sensitivity measure of shifts in the stock price, and vega is the price sensitivity measure of shifts in the volatility of the stock. See crrsens or eqpsens for details on the computation of sensitivities for equity derivatives.

For examples showing the computation of sensitivities for interest-rate based derivatives, see "Computing Instrument Sensitivities" on page 2-26. Likewise,
for examples showing the computation of sensitivities for equity exotic options, see "Computing Instrument Sensitivities" on page 3-22.

Note The delta, gamma, and vega sensitivities that the toolbox calculates are dollar sensitivities.

Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB bank format. Although the calculations are performed in floating-point double precision, only two decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained from the example file deriv.mat. The portfolio consists of eight instruments: two bonds, one bond option, one fixed rate note, one floating rate note, one cap, one floor, and one swap.
Both hedging functions require some common inputs, including the current portfolio holdings (allocations), and a matrix of instrument sensitivities. To create these inputs, load the example portfolio into memory
load deriv.mat;
compute price and sensitivities
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet); Warning: Not all cash flows are aligned with the tree. Result will be approximated.
and extract the current portfolio holdings.

```
Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');
```

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

```
Sensitivities = [Delta Gamma Vega];
```

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and each column with a different sensitivity measure.

To summarize the portfolio information

disp([Price	Holdings	Sensitivities])		
98.72	100.00	-272.65	1029.90	0.00
97.53	50.00	-347.43	1622.69	-0.04
0.05	-50.00	-8.08	643.40	34.07
98.72	80.00	-272.65	1029.90	0.00
100.55	8.00	-1.04	3.31	0
6.28	30.00	294.97	6852.56	93.69
0.05	40.00	-47.16	8459.99	93.69
3.69	10.00	-282.05	1059.68	0.00

The first column above is the dollar unit price of each instrument, the second is the holdings of each instrument (the quantity held or the number of contracts), and the third, fourth, and fifth columns are the dollar delta, gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

```
TargetSens = Holdings' * Sensitivities
TargetSens =
    -61910.22 788946.21 4852.91
```


Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio. The first form of hedgeopt minimizes the cost of hedging a portfolio given a set of target sensitivities. If you want to maintain your existing portfolio composition and exposure, you should be able to do so without spending any money. To verify this, set the target sensitivities to the current sensitivities.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [], [], [], TargetSens)
Sens =
    -61910.22 788946.21 4852.91
Cost =
    0
Quantity' =
    100.00
    50.00
    -50.00
    80.00
    8.00
    30.00
    40.00
    10.00
```

Our portfolio composition and sensitivities are unchanged, and the cost associated with doing nothing is zero. The cost is defined as the change in portfolio value. This number cannot be less than zero because the rebalancing cost is defined as a nonnegative number.

If Value 0 and Value 1 represent the portfolio value before and after rebalancing, respectively, the zero cost can also be verified by comparing the portfolio values.

```
ValueO = Holdings' * Price
Value0 =
```

23674.62

```
Value1 = Quantity * Price
Value1 =
```

 23674.62

Partially Hedged Porffolio

Building upon the previous example, suppose you want to know the cost to achieve an overall portfolio dollar sensitivity of [-23000 -3300 3000], while allowing trading only in instruments 2,3 , and 6 (holding the positions of instruments $1,4,5,7$, and 8 fixed.) To find the cost, first set the target portfolio dollar sensitivity.

TargetSens = [-23000 -3300 3000];
Then, specify the instruments to be fixed.
FixedInd = [11 4 5 7 8];
Finally, call hedgeopt
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... Holdings, FixedInd, [], [], TargetSens);
and again examine the results.
Sens =
$\begin{array}{lll}-23000.00 & -3300.00 & 3000.00\end{array}$
Cost =
19174.02

```
Quantity' =
    100.00
-141.03
137.26
    80.00
        8.00
    -57.96
    40.00
    10.00
```

Recompute Value1, the portfolio value after rebalancing.

```
Value1 = Quantity * Price
Value1 =
```

 4500.60
 As expected, the cost, $\$ 19174.02$, is the difference between Value0 and Value1, $\$ 23674.62$ - $\$ 4500.60$. Only the positions in instruments 2,3 , and 6 have been changed.

Fully Hedged Porffolio

The above example illustrates a partial hedge, but perhaps the most interesting case involves the cost associated with a fully-hedged portfolio (simultaneous delta, gamma, and vega neutrality). In this case, set the target sensitivity to a row vector of zeros and call hedgeopt again.

```
TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], [], TargetSens);
```

Examining the outputs reveals that you have obtained a fully-hedged portfolio

```
Sens =
```

$$
\begin{array}{lll}
-0.00 & -0.00 & -0.00
\end{array}
$$

but at an expense of over $\$ 20,000$,
23055.90

The positions needed to achieve a fully-hedged portfolio

```
Quantity' =
```

100.00
-182. 36
-19.55
80.00
8.00
-32.97
40.00
10.00
result in the new portfolio value

```
Value1 = Quantity * Price
Value1 =
```

618.72

Minimizing Portfolio Sensitivities

The above examples illustrate how to use hedgeopt to determine the minimum cost of hedging a portfolio given a set of target sensitivities. In these examples, portfolio target sensitivities are treated as equality constraints during the optimization process. You tell hedgeopt what sensitivities you want, and it tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of maximum target costs. For this goal the target costs are treated as inequality constraints during the optimization process. You tell hedgeopt the most you are willing spend to insulate your portfolio, and it tells you the smallest portfolio sensitivities you can get for your money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities along the entire cost frontier. From the previous examples, you know that spending nothing simply replicates the existing portfolio, while spending $\$ 23,055.90$ completely hedges the portfolio.

Assume, for example, you are willing to spend as much as $\$ 50,000$, and want to see what portfolio sensitivities will result along the cost frontier. Assume the same instruments are held fixed, and that the cost frontier is evaluated from $\$ 0$ to $\$ 50,000$ at increments of $\$ 1000$.

```
MaxCost = [0:1000:50000];
```

Now, call hedgeopt.
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds available (the amount you are willing to spend)

```
plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')
```


Figure 4-1: Rebalancing Cost Profile
and the portfolio dollar sensitivities versus the funds available.

```
figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
```


Figure 4-2: Funds Available for Rebalancing

Self-Financing Hedges with hedgesIf

Figure 4-1 and Figure 4-2 indicate that there is no benefit to be gained because the funds available for hedging exceed $\$ 23,055.90$, the point of maximum expense required to obtain simultaneous delta, gamma, and vega neutrality.

```
You can also find this point of delta, gamma, and vega neutrality using
hedgeslf.
[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd);
Sens =
    -0.00
    -0.00
    -0.00
Value1 =
    6 1 8 . 7 2
Quantity =
    100.00
        -182.36
        -19.55
        80.00
            8.00
            -32.97
            4 0 . 0 0
            10.00
```

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and instrument quantities (the rebalanced holdings). However, in contrast, the second output parameter of hedgeslf is the value of the rebalanced portfolio, from which you can calculate the rebalancing cost by subtraction.

```
ValueO - Value1
ans =
```

23055.90

In our example, the portfolio is clearly not self-financing, so hedgeslf finds the best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related to the results shown above for hedgeslf. Suppose, instead of directly specifying the funds available for rebalancing (the most money you are willing to spend), you want to simply specify the number of points along the cost frontier. This call to hedgeopt samples the cost frontier at 10 equally spaced points between the point of minimum cost (and potentially maximum exposure) and the point of minimum exposure (and maximum cost).

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, 10);
Sens =
\begin{tabular}{rrr}
-32784.46 & 2231.83 & -49694.33 \\
-29141.74 & 1983.85 & -44172.74 \\
-25499.02 & 1735.87 & -38651.14 \\
-21856.30 & 1487.89 & -33129.55 \\
-18213.59 & 1239.91 & -27607.96 \\
-14570.87 & 991.93 & -22086.37 \\
-10928.15 & 743.94 & -16564.78 \\
-7285.43 & 495.96 & -11043.18 \\
-3642.72 & 247.98 & -5521.59 \\
0.00 & -0.00 & 0.00
\end{tabular}
Cost =
            0.00
    2561.77
    5123.53
    7685.30
    10247.07
    12808.83
    15370.60
    17932.37
    20494.14
    23055.90
```

Now plot this data.
figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')

```
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
```


Figure 4-3: Rebalancing Cost
In this calling form, hedgeopt calls hedgeslf internally to determine the maximum cost needed to minimize the portfolio sensitivities ($\$ 23,055.90$), and evenly samples the cost frontier between $\$ 0$ and $\$ 23,055.90$.

Note that both hedgeopt and hedgeslf cast the optimization problem as a constrained linear least squares problem. Depending upon the instruments and constraints, neither function is guaranteed to converge to a solution. In some cases, the problem space may be unbounded, and additional instrument equality constraints, or user-specified constraints, may be necessary for convergence. See "Hedging with Constrained Portfolios" on page 4-20 for additional information.

Specifying Constraints with ConSet

Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that allows you to specify a set of linear inequality constraints for instruments in your portfolio. The examples in this section are quite brief. For additional information regarding portfolio constraint specifications, refer to the section "Analyzing Portfolios" found in the Financial Toolbox documentation.

Setting Constraints

For the first example of setting constraints, return to the fully-hedged portfolio example that used hedgeopt to determine the minimum cost of obtaining simultaneous delta, gamma, and vega neutrality (target sensitivities all zero). Recall that when hedgeopt computes the cost of rebalancing a portfolio, the input target sensitivities you specify are treated as equality constraints during the optimization process. The situation is reproduced below for convenience.

```
TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);
```

The outputs provide a fully-hedged portfolio

```
Sens =
    -0.00 -0.00 -0.00
```

at an expense of over $\$ 23,000$.

```
Cost =
```

23055.90

The positions needed to achieve this fully-hedged portfolio are

```
Quantity' =
```

$$
100.00
$$

$$
-182.36
$$

$$
-19.55
$$

$$
80.00
$$

-32.97
40.00
10.00

Suppose now that you want to place some upper and lower bounds on the individual instruments in your portfolio. You can specify these constraints, along with a variety of general linear inequality constraints, with the Financial Toolbox function portcons.

As an example, assume that, in addition to holding instruments $1,4,5,7$, and 8 fixed as before, you want to bound the position of all instruments to within +/- 180 contracts (for each instrument, you cannot short or long more than 180 contracts). Applying these constraints disallows the current position in the second instrument (short 182.36). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.

```
LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [ [180 180 180 180 180 180 180 180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
```

To impose these constraints, call hedgeopt with ConSet as the last input.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens, ConSet);
```

Examine the outputs and see that they are all set to NaN, indicating that the problem, given the constraints, is not solvable. Intuitively, the results mean that you cannot obtain simultaneous delta, gamma, and vega neutrality with these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call hedgeslf.

```
[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd, ConSet);
```

```
Sens =
```

```
Sens =
```

 - 352.43
 21.99
 -498.77
    ```
Value1 =
    855.10
Quantity =
    100.00
    -180.00
    -37.22
    80.00
    8 . 0 0
        -31.86
        40.00
        10.00
```

hedgeslf enforces the lower bound for the second instrument, but the sensitivity is far from neutral. The cost to obtain this portfolio is

```
Value0 - Value1
ans =
```

22819.52

Portfolio Rebalancing

As a final example of user-specified constraints, rebalance the portfolio using the second hedging goal of hedgeopt. Assume that you are willing to spend as much as $\$ 20,000$ to rebalance your portfolio, and you want to know what minimum portfolio sensitivities you can get for your money. In this form, recall that the target cost $(\$ 20,000)$ is treated as an inequality constraint during the optimization process.

For reference, invoke hedgeopt without any user-specified linear inequality constraints.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], 20000);
Sens =
    -4345.36 295.81 -6586.64
```

```
Cost =
    20000.00
Quantity' =
    100.00
    -151.86
    -253.47
        80.00
            8.00
        -18.18
        40.00
        10.00
```

This result corresponds to the $\$ 20,000$ point along the Portfolio Sensitivities Profile shown in Figure 4-3, Rebalancing Cost, on page 4-14.

Assume that, in addition to holding instruments $1,4,5,7$, and 8 fixed as before, you want to bound the position of all instruments to within $+/-150$ contracts (for each instrument, you cannot short more than 150 contracts and you cannot long more than 150 contracts). These bounds disallow the current position in the second and third instruments (-151.86 and -253.47). All other instruments are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.

```
LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [ [150 150 150 150 150 150 150 150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
```

To impose these constraints, again call hedgeopt with ConSet as the last input.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings,FixedInd, [], 20000, [], ConSet);
Sens =
    -8818.47 434.43 -4010.79
```

```
Cost =
            19876.89
Quantity ' =
    100.00
    -150.00
    -150.00
        80.00
        8.00
        -28.32
        40.00
        10.00
```

With these constraints hedgeopt enforces the lower bound for the second and third instruments. The cost incurred is $\$ 19,876.89$.

Hedging with Constrained Portfolios

Both hedging functions cast the optimization as a constrained linear least squares problem. (See the function lsqlin in the Optimization Toolbox for details.) In particular, lsqlin attempts to minimize the constrained linear least squares problem

$$
\min _{x} \frac{1}{2}\|C x-d\|_{2}^{2} \quad \text { such that } \quad A \cdot x \leq b, ~ A e q \cdot x=b e q,
$$

where C, A, and $A e q$ are matrices, and $d, b, b e q, l b$, and $u b$ are vectors. For the Financial Derivatives Toolbox, x is a vector of asset holdings (contracts).

This section provides some examples of setting constraints and discusses how to recognize situations when the least squares problem is improperly constrained:

- "Example: Fully Hedged Portfolio" on page 4-20
- "Example: Minimize Portfolio Sensitivities" on page 4-22
- "Example: Under-Determined System" on page 4-24
- "Example: Portfolio Constraints with hedgeslf" on page 4-25

Depending upon the constraints and the number of assets in the portfolio, a solution to a particular problem may or may not exist. Furthermore, if a solution is found, it may not be unique. For a unique solution to exist, the least squares problem must be sufficiently and appropriately constrained.

Example: Fully Hedged Portfolio

Recall that hedgeopt allows you to allocate an optimal hedge by one of two goals:

- Minimize the cost of hedging a portfolio given a set of target sensitivities
- Minimize portfolio sensitivities for a given set of maximum target costs

As an example, reproduce the results for the fully hedged portfolio example.

```
TargetSens = [0 0 0];
FixedInd = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);
Sens =
    -0.00 -0.00 -0.00
Cost =
    23055.90
Quantity' =
    98.72
-182.36
    -19.55
    80.00
    8.00
        -32.97
        4 0 . 0 0
        10.00
```

This example finds a unique solution at a cost of just over $\$ 23,000$. The matrix C (formed internally by hedgeopt and passed to lsqlin) is the asset Price vector expressed as a row vector.

```
C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]
```

The vector d is the current portfolio value Value0 $=23674.62$. The example maintains, as closely as possible, a constant portfolio value subject to the specified constraints.

Additional Constraints

In the absence of any additional constraints, the least squares objective involves a single equation with eight unknowns. This is an under-determined system of equations. Because such systems generally have an infinite number of solutions, you need to specify additional constraints to achieve a solution with practical significance. The additional constraints can come from two sources:

- User-specified equality constraints
- Target sensitivity equality constraints imposed by hedgeopt

The fully-hedged portfolio example specifies five equality constraints associated with holding assets $1,4,5,7$, and 8 fixed. This reduces the number of unknowns from eight to three, which is still an under-determined system. However, when combined with the first goal of hedgeopt, the equality constraints associated with the target sensitivities in TargetSens produce an additional system of three equations with three unknowns. This additional system guarantees that the weighted average of the delta, gamma, and vega of assets 2,3 , and 6 , together with the remaining assets held fixed, satisfy the overall portfolio target sensitivity requirements in TargetSens.

Combining the least squares objective equation with the three portfolio sensitivity equations provides an overall system of four equations with three unknown asset holdings. This is no longer an under-determined system, and the solution is as shown.

If the assets held fixed are reduced, e.g., FixedInd = [llll $\left.\begin{array}{ll}1 & 4 \\ 5 & 7\end{array}\right]$, hedgeopt returns a no cost, fully-hedged portfolio (Sens = $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and Cost $=0$).

If you further reduce FixedInd (e.g., [1 4 5], [1 4], or even []), hedgeopt always returns a no cost, fully-hedged portfolio. In these cases, insufficient constraints result in an under-determined system. Although hedgeopt identifies no cost, fully-hedged portfolios, there is nothing unique about them. These portfolios have little practical significance.

Constraints must be sufficient and appropriately defined. Additional constraints having no effect on the optimization are called dependent constraints. As a simple example, assume that parameter Z is constrained such that $Z \leq 1$. Furthermore, assume we somehow add another constraint that effectively restricts $Z \leq 0$. The constraint $Z \leq 1$ now has no effect on the optimization.

Example: Minimize Portfolio Sensitivities

To illustrate using hedgeopt to minimize portfolio sensitivities for a given maximum target cost, specify a target cost of $\$ 20,000$ and determine the new portfolio sensitivities, holdings, and cost of the rebalanced portfolio.

```
MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1 4 5 7 8], [], MaxCost);
Sens =
    -4345.36 295.81 -6586.64
Cost =
    20000.00
Quantity' =
    100.00
-151.86
-253.47
    80.00
        8.00
    -18.18
        4 0 . 0 0
        10.00
```

This example corresponds to the $\$ 20,000$ point along the cost axis in Figure 4-1, Figure 4-2, and Figure 4-3.

When minimizing sensitivities, the maximum target cost is treated as an inequality constraint; in this case, MaxCost is the most you are willing to spend to hedge a portfolio. The least squares objective matrix C is the matrix transpose of the input asset sensitivities

```
C = Sensitivities'
```

a 3-by-8 matrix in this example, and d is a 3-by- 1 column vector of zeros, [0 0 0 $]^{\prime}$.

Without any additional constraints, the least squares objective results in an under-determined system of three equations with eight unknowns. By holding assets $1,4,5,7$, and 8 fixed, you reduce the number of unknowns from eight to three. Now, with a system of three equations with three unknowns, hedgeopt finds the solution shown.

Example: Under-Determined System

Reducing the number of assets held fixed creates an under-determined system with meaningless solutions. For example, see what happens with only four assets constrained.

```
FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], MaxCost);
Sens =
    -0.00 -0.00 -0.00
Cost =
    20000.00
Quantity' =
    100.00
    -149.31
    -14.91
        80.00
            8.00
            -34.64
            40.00
            -32.60
```

You have spent $\$ 20,000$ (all the funds available for rebalancing) to achieve a fully-hedged portfolio.
With an increase in available funds to $\$ 50,000$, you still spend all available funds to get another fully-hedged portfolio.

```
MaxCost = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [],MaxCost);
Sens =
    -0.00 0.00 0.00
```

```
Cost =
    50000.00
Quantity ' =
    100.00
    -473.78
    -60.51
    80.00
    8.00
    -18.20
    40.00
    385.60
```

All solutions to an under-determined system are meaningless. You buy and sell various assets to obtain zero sensitivities, spending all available funds every time. If you reduce the number of fixed assets any further, this problem is insufficiently constrained, and you find no solution (the outputs are all NaN).

Note also that no solution exists whenever constraints are inconsistent. Inconsistent constraints create an infeasible solution space; the outputs are all NaN .

Example: Portfolio Constraints with hedgeslf

The other hedging function, hedgeslf, attempts to minimize portfolio sensitivities such that the rebalanced portfolio maintains a constant value (the rebalanced portfolio is hedged against market moves and is closest to being self-financing). If a self-financing hedge is not found, hedgeslf tries to rebalance a portfolio to minimize sensitivities.

From a least squares systems approach, hedgeslf first attempts to minimize cost in the same way that hedgeopt does. If it cannot solve this problem (a no cost, self-financing hedge is not possible), hedgeslf proceeds to minimize sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the portfolio CRRInstSet obtained from the example MAT-file deriv.mat. The portfolio consists of eight option instruments: two stock options, one barrier, one compound, two lookback, and two Asian.

The hedging functions require inputs that include the current portfolio holdings (allocations) and a matrix of instrument sensitivities. To create these inputs, start by loading the example portfolio into memory

```
load deriv.mat;
```

Next, compute the prices and sensitivities of the instruments in this portfolio.

```
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);
```

Extract the current portfolio holdings (the quantity held or the number of contracts).

```
Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');
```

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

```
Sensitivities = [Delta Gamma Vega];
```

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio and each column with a different sensitivity measure.

| disp([Price | Holdings | Sensitivities]) | | | |
| ---: | ---: | ---: | ---: | ---: | :---: |
| 8.29 | 10.00 | 0.59 | 0.04 | 53.45 | |
| 2.50 | 5.00 | -0.31 | 0.03 | 67.00 | |
| 12.13 | 1.00 | 0.69 | 0.03 | 67.00 | |
| 3.32 | 3.00 | -0.12 | -0.01 | -98.08 | |
| 7.60 | 7.00 | -0.40 | -45926.32 | 88.18 | |
| 11.78 | 9.00 | -0.42 | -112143.15 | 119.19 | |
| 4.18 | 4.00 | 0.60 | 45926.32 | 49.21 | |
| 3.42 | 6.00 | 0.82 | 112143.15 | 41.71 | |

The first column contains the dollar unit price of each instrument, the second contains the holdings of each instrument, and the third, fourth, and fifth columns contain the delta, gamma, and vega dollar sensitivities, respectively.

Suppose that you want to obtain a delta, gamma and vega neutral portfolio using hedgeslf.

```
[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price, ...
Holdings)
```

```
Sens =
    0.00
    -0.00
    0.00
Value1 =
    313.93
Quantity =
    10.00
    7.64
    -1.56
    26.13
    9.94
    3.73
    -0.75
    8.11
```

hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced portfolio (Value1) and the new allocation for each instrument (Quantity).

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, you can verify the cost by comparing the portfolio values.

```
Value0= Holdings' * Price
Value0 =
```

313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the same.

Suppose now that you want to place some upper and lower bounds on the individual instruments in your portfolio. By using the Financial Toolbox
function portcons, you can specify these constraints, along with a variety of general linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed as before, you want to bound the position of all instruments to within $+/-20$ contracts (for each instrument, you cannot short or long more than 20 contracts). Applying these constraints disallows the current position in the fourth instrument (long 26.13). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.

```
LowerBounds = [[-20 -20 -20 -20 -20 -20 -20
UpperBounds =[[\begin{array}{llllllllll}{20}&{20}&{20}&{20}&{20}&{20}&{20}&{20}\end{array}];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
```

To impose these constraints, call hedgeopt with ConSet as the last input.

```
[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price, ...
Holdings, 1, ConSet)
Sens =
    -0.00
    0.00
    0.00
Cost =
3 1 3 . 9 3
Quantity1 =
    10.00
    5.28
    10.98
    20.00
    20.00
    -6.99
    -20.00
    9.39
```

Observe that hedgeslf enforces the upper bound on the fourth instrument, and the portfolio continues to be fully hedged and self-financing.

Function Reference

Functions - Categorical List (p. 5-2) Toolbox functions grouped by the type of operation they perform

Functions - Alphabetical List (p. 5-11) Toolbox functions listed in alphabetic order

Functions - Categorical List

This chapter provides detailed descriptions of the functions in the Financial Derivatives Toolbox. The categories of functions described are

- "Portfolio Hedge Allocation"
- "Price and Sensitivity from the Interest-Rate Term Structure"
- "Price and Sensitivity from Heath-Jarrow-Morton Trees"
- "Price and Sensitivity from Black-Derman-Toy Trees"
- "Price and Sensitivity from Black-Karasinski Trees"
- "Price and Sensitivity from Cox-Ross-Rubinstein Trees"
- "Price and Sensitivity from Equal Probabilities Binomial Trees"
- "Price and Sensitivity from Hull-White Trees"
- "Heath-Jarrow-Morton Utilities"
- "Black-Derman-Toy Utilities"
- "Black-Karasinski Utilities"
- "Cox-Ross-Rubinstein Utilities"
- "Equal Probabilities Tree Utilities"
- "Hull-White Utilities"
- "Tree Manipulation"
- "Derivatives Pricing Options"
- "Instrument Portfolio Handling"
- "Financial Object Structures"
- "Interest Term Structure"
- "Date Function"
- "Graphical Display Function"

Portfolio Hedge Allocation

hedgeslf Self-financing hedge
hedgeopt Allocate optimal hedge for target costs or sensitivities

Price and Sensitivity from the Interest-Rate Term Structure

| bondbyzero | Price bond from set of zero curves |
| :--- | :--- |
| cfbyzero | Price cash flows from set of zero curves |
| fixedbyzero | Price fixed-rate note from set of zero curves |
| floatbyzero | Price floating-rate note from set of zero curves |
| intenvprice | Price instruments from set of zero curves |
| intenvsens | Instrument prices and sensitivities from set of zero
 curves |
| swapbyzero | Price swap instrument from set of zero curves |

Price and Sensitivity from Heath-Jarrow-Morton Trees

| hjmprice | Instrument prices from HJM interest-rate tree |
| :--- | :--- |
| hjmsens | Instrument prices and sensitivities from HJM
 interest-rate tree |
| hjmtimespec | Specify time structure for HJM interest-rate tree |
| hjmtree | Construct HJM interest-rate tree |
| hjmvolspec | Specify HJM interest-rate volatility process |

Price and Sensitivity from Black-Derman-Toy Trees

bdtprice Instrument prices from BDT interest-rate tree
bdtsens Instrument prices and sensitivities from BDT interest-rate tree

| bdttimespec | Specify time structure for BDT interest-rate tree |
| :--- | :--- |
| bdttree | Construct BDT interest-rate tree |
| bdtvolspec | Specify BDT interest-rate volatility process |

Price and Sensitivity from Black-Karasinski Trees

bkprice Instrument prices from Black-Karasinski tree
bksens Instrument prices and sensitivities from Black-Karasinski tree
bktimespec Specify time structure for Black-Karasinski tree
bktree Construct Black-Karasinski interest-rate tree
bkvolspec Specify Black-Karasinski interest-rate volatility process

Price and Sensitivity from Cox-Ross-Rubinstein Trees

| crrprice | Instrument prices from CRR binomial tree |
| :--- | :--- |
| crrsens | Instrument prices and sensitivities from CRR binomial |
| | tree |
| crrtimespec | Specify time structure for CRR binomial tree |
| crrtree | Construct CRR stock tree |

Price and Sensitivity from Equal Probabilities Binomial Trees

| eqpprice | Instrument prices from EQP binomial tree |
| :--- | :--- |
| eqpsens | Instrument prices and sensitivities from EQP binomial |
| tree | |
| eqptimespec | Specify time structure for EQP binomial tree |
| eqptree | Construct EQP stock tree |

Price and Sensitivity from Hull-White Trees

hwprice Instrument prices from Hull-White tree
hwsens Instrument prices and sensitivities from Hull-White tree
hwtimespec
hwtree
hwvolspec
Specify time structure for Hull-White tree
Construct Hull-White interest-rate tree
Specify Hull-White interest-rate volatility process

Heath-Jarrow-Morton Utilities

bondbyhjm Price bond from HJM interest-rate tree
capbyhjm Price cap instrument from HJM interest-rate tree
cfbyhjm Price arbitrary set of cash flows from HJM interest-rate tree
fixedbyhjm Price fixed-rate note from HJM interest-rate tree
floatbyhjm Price floating-rate note from HJM interest-rate tree
floorbyhjm Price floor instrument from HJM interest-rate tree
mmktbyhjm Create money-market tree from HJM interest-rate tree
optbndbyhjm Price bond option from HJM interest-rate tree
swapbyhjm Price swap instrument from HJM interest-rate tree

Black-Derman-Toy Utilities

bondbybdt Price bond from BDT interest-rate tree
capbybdt Price cap from BDT interest-rate tree
cfbybdt Price arbitrary set of cash flows from BDT interest-rate tree
fixedbybdt Price fixed-rate note from BDT interest-rate tree
floatbybdt Price floating-rate note from BDT interest-rate tree
floorbybdt Price floor instrument from BDT interest-rate tree
mmktbybdt Create money-market tree from BDT interest-rate tree
optbndbybdt Price bond option from BDT interest-rate tree
swapbybdt Price swap instrument from BDT interest-rate tree

Black-Karasinski Utilities

| bondbybk | Price bond from Black-Karasinski interest-rate tree |
| :--- | :--- |
| capbybk | Price cap instrument from Black-Karasinski interest-rate
 tree |
| cfbybk | Price arbitrary set of cash flows from Black-Karasinski
 interest-rate tree |
| fixedbybk | Price fixed-rate note from Black-Karasinski interest-rate
 tree |
| floatbybk | Price floating-rate note from Black-Karasinski
 interest-rate tree |
| floorbybk | Price floor instrument from Black-Karasinski
 interest-rate tree |
| optbndbybk | Price bond option from Black-Karasinski interest-rate
 tree |
| swapbybk | Price swap instrument from Black-Karasinski
 interest-rate tree |

Cox-Ross-Rubinstein Utilities

| asianbycrr | Price Asian option from CRR binomial tree |
| :--- | :--- |
| barrierbycrr | Price barrier option from CRR binomial tree |
| compoundbycrr | Price compound option from CRR binomial tree |
| lookbackbycrr | Price lookback option from CRR binomial tree |
| optstockbycrr | Price stock option from CRR binomial tree |

Equal Probabilities Tree Utilities

asianbyeqp Price Asian option from EQP binomial tree
barrierbyeqp Price barrier option from EQP binomial tree
compoundbyeqp Price compound option from EQP binomial tree
lookbackbyeqp Price lookback option from EQP binomial tree
optstockbyeqp Price stock option from EQP binomial tree

Hull-White Utilities

| bondbyhw | Price bond from Hull-White interest-rate tree |
| :--- | :--- |
| capbyhw | Price cap instrument from Hull-White interest-rate tree |
| cfbyhw | Price arbitrary set of cash flows from Hull-White
 interest-rate tree |
| fixedbyhw | Price fixed-rate note from Hull-White interest-rate tree |
| floatbyhw | Price floating-rate note from Hull-White interest-rate
 tree |
| floorbyhw | Price floor instrument from Hull-White interest-rate tree |
| optbndbyhw | Price bond option from Hull-White interest-rate tree |
| swapbyhw | Price swap instrument from HJM interest-rate tree |

Tree Manipulation

| bushpath | Extract entries from node of HJM bushy tree |
| :--- | :--- |
| bushshape | Retrieve shape of HJM bushy tree |
| cvtree | Convert inverse discount tree to interest-rate tree |
| mkbush | Create HJM bushy tree |
| mktree | Create recombining binomial tree |
| mktrintree | Create recombining trinomial tree |
| treepath | Extract entries from node of recombining binomial tree |
| treeshape | Retrieve shape of recombining binomial tree |
| trintreepath | Extract entries from node of recombining trinomial tree |
| trintreeshape | Retrieve shape of recombining trinomial tree |

Derivatives Pricing Options

| derivget | Get derivatives pricing options |
| :--- | :--- |
| derivset | Set or modify derivatives pricing options |

| Instrument | Portfolio Handling |
| :--- | :--- |
| instadd | Add types to instrument collection |
| instaddfield | Add new instruments to instrument collection |
| instasian | Construct Asian option |
| instbarrier | Construct barrier option |
| instbond | Construct bond instrument |
| instcap | Construct cap instrument |
| instcf | Construct arbitrary cash flow instrument |
| instcompound | Construct compound option |
| instdelete | Complement of instrument set by matching conditions |
| instdisp | Display instruments |
| instfields | List field names |
| instfind | Search instruments for matching conditions |
| instfixed | Construct fixed-rate instrument |
| instfloat | Construct floating-rate instrument |
| instfloor | Construct floor instrument |
| instget | Retrieve data from instrument variable |
| instgetcell | Retrieve data and context from instrument variable |
| instlength | Count instruments |
| instlookback | Construct lookback option |
| instoptbnd | Construct bond option |
| instoptstock | Construct stock option |
| instselect | Create instrument subset from matching conditions |
| instsetfield | Add or reset data for existing instruments |
| instswap | Construct swap instrument |
| insttypes | List types |

Financial Object Structures
classfin Create financial structure or return financial structureclass name
isafin True if financial structure type or financial object class
stockspec Create stock structure
Interest Term Structure
date2time Time and frequency from dates
disc2rate Interest rates from cash flow discounting factors
intenvget Get properties of interest-rate structure
intenvset Set properties of interest-rate structure
rate2disc Discounting factors from interest rates
ratetimes Change time intervals defining interest-rate environment
time2date Dates from time and frequency
Date Function
datedisp Display date entries
Graphical Display Function
treeviewer Display tree information

Functions - Alphabetical List

This section contains function reference pages listed alphabetically.
Purpose Price Asian option from CRR binomial tree

| Syntax | Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) | |
| :---: | :---: | :---: |
| Arguments | CRRTree | Stock tree structure created by crrtree. |
| | OptSpec | NINST-by-1 list of string values 'Call' or 'Put '. |
| | Strike | NINST-by-1 vector of strike price values. Each row is the schedule for one option. |
| | Settle | NINST-by-1 vector of Settle dates. The settle date for every Asian option is set to the valuation date of the stock tree. The Asian argument Settle is ignored. |
| | ExerciseDates | For a European option (AmericanOpt $=0$): |
| | | NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date. |
| | | For an American option (AmericanOpt $=1$): |
| | | NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date. |
| | AmericanOpt | (Optional) If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European option. If AmericanOpt = 1, the option is an American option. |
| | AvgType | (Optional) String = 'arithmetic ' for arithmetic average (default) or 'geometric' for geometric average. |
| | AvgPrice | (Optional) Scalar representing the average price of the underlying asset at Settle. This argument is used when AvgDate < Settle. Default is the current stock price. |

AvgDate
(Optional) Scalar representing the date on which the averaging period begins. Default $=$ Settle.

Description

Examples

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixedand floating-strike Asian options. To compute the value of a floating-strike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by- 1 vector of expected prices at time 0.
Asian options are priced using Hull-White (1993). Consequently, for these options only the root node contains a unique price.

Price a floating-strike Asian option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
load deriv;
Set the required values. Other arguments will use defaults.

```
OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';
```

Use asianbycrr to compute the price of the option.
Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
1.2177

asianbycrr

See Also
 crrtree, instasian

References Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Volume 1, pp. 21-31.

Purpose

Price Asian option from EQP binomial tree

\author{
Syntax
 ```
Price = asianbyeqp(CRRTree, OptSpec, Strike, Settle, ExerciseDates,
 AmericanOpt, AvgType, AvgPrice, AvgDate)

```
}

Arguments
EQPTree Stock tree structure created by eqptree.
OptSpec NINST-by-1 list of string values 'Call' or 'Put'.
Strike NINST-by-1 vector of strike price values. Each row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle date for every Asian option is set to the valuation date of the stock tree. The Asian argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):
NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (AmericanOpt \(=1\) ):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If AmericanOpt \(=1\), the option is an American option.
AvgType (Optional) String = 'arithmetic' for arithmetic average (default) or 'geometric' for geometric average.
(Optional) Scalar representing the average price of the underlying asset at Settle. This argument is used when AvgDate < Settle. Default is the current stock price.

AvgDate (Optional) Scalar representing the date on which the averaging period begins. Default \(=\) Settle.

\section*{Description}

\section*{Examples}

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixedand floating-strike Asian options. To compute the value of a floating-strike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.
Price a floating-strike Asian option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
```

load deriv;

```

Set the required values. Other arguments will use defaults.
```

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

```

Use asianbyeqp to compute the price of the option.
```

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =

```
    1.2724

See Also eqptree, instasian
References Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Volume 1, pp. 21-31.

\section*{barrierbycrr}

\section*{Purpose}

Price barrier option from CRR binomial tree

\author{
Syntax \\ [Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)
}

\section*{Arguments}

CRRTree
OptSpec

Strike NINST-by-1 vector of strike price values. Each row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle date for every barrier option is set to the valuation date of the stock tree. The barrier argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt \(=0\) ):
NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (American0pt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If American0pt \(=1\), the option is an American option.

\section*{barrierbycrr}
\begin{tabular}{ll} 
BarrierSpec & List of string values: \\
& 'UI ': Up Knock In \\
& 'UO ': Up Knock Out \\
'DI ': Down Knock In \\
Barrier & 'DO ': Down Knock Out \\
Rebate & \begin{tabular}{l} 
Vector of barrier values. \\
(Optional) NINST-by-1 matrix of rebate values.
\end{tabular} \\
Options & \begin{tabular}{l} 
Default = 0. For Knock-in options, the rebate is paid at \\
expiry. For Knock-out options, the rebate is paid when \\
the barrier is reached. \\
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular}
\end{tabular}

See instbarrier for a description of barrier contract arguments.

\section*{Description [Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using a CRR binomial tree.}

Price is a NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Price a barrier option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
```

load deriv;

```

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';

```
```

AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;
Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)
Price =

```
    12.1272

See Also crrtree, instbarrier
References Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

\section*{barrierbyeqp}

\section*{Purpose Price barrier option from EQP binomial tree}
\begin{tabular}{|c|c|c|}
\hline Syntax & [Price, PriceTree ExerciseDates, Options) & ] = barrierbyeqp(EQPTree, OptSpec, Strike, AmericanOpt, BarrierSpec, Barrier, Rebate, \\
\hline \multirow[t]{9}{*}{Arguments} & EQPTree & Stock tree structure created by eqptree. \\
\hline & OptSpec & NINST-by-1 list of string values 'Call' or 'Put'. \\
\hline & Strike & NINST-by-1 vector of strike price values. Each row is the schedule for one option. \\
\hline & Settle & NINST-by-1 vector of Settle dates. The settle date for every barrier option is set to the valuation date of the stock tree. The barrier argument Settle is ignored. \\
\hline & ExerciseDates & For a European option (AmericanOpt = 0): \\
\hline & & NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date. \\
\hline & & For an American option (AmericanOpt = 1): \\
\hline & & NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date. \\
\hline & AmericanOpt & If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If AmericanOpt \(=1\), the option is an American option. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
BarrierSpec & List of string values: \\
& 'UI ': Up Knock In \\
& 'UO ' : Up Knock Out \\
'DI ': Down Knock In \\
Barrier & 'DO ': Down Knock Out \\
Rebate & \begin{tabular}{l} 
Vector of barrier values. \\
\\
\\
(Optional) NINST-by-1 matrix of rebate values. \\
Default = 0. For Knock-in options, the rebate is paid at \\
expiry. For Knock-out options, the rebate is paid when \\
the barrier is reached. \\
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular}
\end{tabular}

See instbarrier for a description of barrier contract arguments.

\section*{Description}

\section*{Examples}
[Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using an equal probabilities binomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Price a barrier option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
load deriv;
Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';

```

\section*{barrierbyeqp}
```

ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;
Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)
Price =
12.2632

```

\section*{See Also eqptree, instbarrier}

\section*{References \\ Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical} Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

\section*{Purpose}

Syntax
Arguments

\section*{Description}

Instrument prices from BDT interest-rate tree
```

[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

```

BDTTree Interest-rate tree structure created by bdttree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type. Each type can have different data fields. The stored data field is a row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options) computes arbitrage free prices for instruments using an interest-rate tree created with bdttree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are
- bondbybdt: Price a bond from a BDT tree.
- capbybdt: Price a cap from a BDT tree.
- cfbybdt: Price an arbitrary set of cash flows from a BDT tree.
- fixedbybdt: Price a fixed-rate note from a BDT tree.
- floatbybdt: Price a floating-rate note from a BDT tree.

\section*{bdtprice}
- floorbybdt: Price a floor from a BDT tree.
- optbndbybdt: Price a bond option from a BDT tree.
- swapbybdt: Price a swap from a BDT tree.

\section*{Examples}

Load the BDT tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
```

load deriv;
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});
instdisp(BDTSubSet)

```
\begin{tabular}{lllllll} 
Index & Type & CouponRate & Settle & Maturity & Period & Name ... \\
1 & Bond & 0.1 & \(01-\) Jan-2000 & \(01-\) Jan-2003 & 1 & \(10 \%\) bond \\
2 & Bond & 0.1 & \(01-J a n-2000\) & \(01-J a n-2004\) & 2 & \(10 \%\) bond
\end{tabular}
Index Type Strike Settle Maturity CapReset... Name ...
    [Price, PriceTree] = bdtprice(BDTTree, BDTSubSet);
    Warning: Not all cash flows are aligned with the tree. Result will
    be approximated.
    Price =
            95.5030
            93.9079
            1.4863

You can use treeviewer to see the prices of these three instruments along the price tree.


First 10\% Bond (Maturity 2003)


Second 10\% Bond (Maturity 2004)


15\% Cap

\author{
See Also
}
bdtsens, bdttree, instadd, intenvprice, intenvsens

Purpose

\section*{Syntax}

Arguments

Description

Instrument prices and sensitivities from BDT interest-rate tree
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)
BDTTree Interest-rate tree structure created by bdttree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type. Each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the bdttree function. NINST instruments from a financial instrument variable, InstSet, are priced. bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to bdttree. See bdttree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to bdttree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\). Vega is computed by finite differences in calls to bdttree. See bdtvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
```

 load deriv;
 BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});
 instdisp(BDTSubSet)
 Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% Bond
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% Bond
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 15% Cap
[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Delta =
-232.6681
-281.0517
78.3776

```

\section*{bdtsens}

> Gamma \(=\)
> \(1.0 \mathrm{e}+003\) *
> 0.8037
> 1.1819
> 0.7490

\section*{See Also \\ bdtprice, bdttree, bdtvolspec, instadd}

\section*{bdttimespec}

\section*{Purpose}

\section*{Syntax}

\section*{Arguments}

Compounding

Specify time structure for BDT interest-rate tree
TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

ValuationDate Scalar date marking the pricing date and first observation in the tree. Specify as serial date number or date string

Maturity \(\quad\) Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order.
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default \(=1\). This argument determines the formula for the discount factors:

Compounding \(=1,2,3,4,6,12\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units, e.g., \(T=F\) is one year.

Compounding \(=365\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.

Compounding \(=-1\)
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.

Description TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a BDT tree and determines the mapping between dates and time for rate quoting.
TimeSpec is a structure specifying the time layout for bdttree. The state observation dates are [ValuationDate; Maturity (1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{bdttimespec}

\section*{Examples}

Specify a four-period tree with annual nodes. Use annual compounding to report rates.
```

Compounding = 1;
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'BDTTimeSpec'
ValuationDate: 730486
Maturity: [5x1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

```
See Also bdttree, bdtvolspec

Purpose

\section*{Syntax}

Arguments

Description

\section*{Examples}

Construct BDT interest-rate tree
```

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

```

VolSpec Volatility process specification. See bdtvolspec for information on the volatility process.

RateSpec Interest-rate specification for the initial rate curve. See intenvset for information on declaring an interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation dates of the BDT tree and the Compounding rule for date to time mapping and price-yield formulas. See bdttimespec for information on the tree structure.

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

Using the data provided, create a BDT volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a BDT tree with bdttree.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

```

\section*{bdttree}

Use treeviewer to observe the tree you have created.
treeviewer(BDTTree)


See Also
bdtprice, bdttimespec, bdtvolspec, intenvset

\section*{bdtvolspec}

\section*{Purpose}
\(\left.\begin{array}{ll}\text { Syntax } & \begin{array}{l}\text { Volspec }=\text { bdtvolspec (ValuationDate, VolDates, VolCurve, } \\ \text { InterpMethod) }\end{array} \\ \text { Arguments } & \text { ValuationDate }\end{array} \begin{array}{l}\text { Scalar value representing the observation date of the } \\ \text { investment horizon. }\end{array}\right]\)

Description Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve, InterpMethod) creates a structure specifying the volatility for bdttree.

\section*{Examples}

Using the data provided, create a BDT volatility specification (VolSpec).
```

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
FinObj: 'BDTVolSpec'
ValuationDate: 730486
VolDates: [5x1 double]
VolCurve: [5x1 double]
VolInterpMethod: 'linear'

```

See Also bdttree, interp1

Purpose
Instrument prices from Black-Karasinski interest-rate tree

\section*{Syntax \\ [Price, PriceTree] = bkprice(BKTree, InstSet, Options)}

Arguments

\section*{Description}

BKTree Interest-rate tree structure created by bktree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type. Each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = bkprice(BKTree, InstSet, Options) computes arbitrage free prices for instruments using an interest-rate tree created with bktree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are
- bondbybk: Price a bond from a Black-Karasinski tree.
- capbybk: Price a cap from a Black-Karasinski tree.
- cfbybk: Price an arbitrary set of cash flows from a Black-Karasinski tree.
- fixedbybk: Price a fixed-rate note from a Black-Karasinski tree.
- floatbybk: Price a floating-rate note from a Black-Karasinski tree.
- floorbybk: Price a floor from a Black-Karasinski tree.
- optbndbybk: Price a bond option from a Black-Karasinski tree.
- swapbybk: Price a swap from a Black-Karasinski tree.

\section*{Examples}

Load the BK tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
```

 load deriv;
 BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});
 instdisp(BKSubSet)
 Index Type CouponRate Settle Maturity Period Name ...
B Bond 0.03 01-Jan-2004 01-Jan-2007 1 3% bond
2 Bond 0.03 01-Jan-2004 01-Jan-2008 2 3% bond
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 4% Cap
[Price, PriceTree] = bkprice(BKTree, BKSubSet);
Price =

```
        98.1096
        95.6734
            2.2706

You can use treeviewer to see the prices of these three instruments along the price tree.

\section*{bkprice}
```

treeviewer(PriceTree, BKSubSet)

```


First 3\% Bond (Maturity 2007)


Second 3\% Bond (Maturity 2008)


4\% Cap

See Also bksens, bktree, instadd, intenvprice, intenvsens

\section*{Purpose}

Instrument prices and sensitivities from Black-Karasinski interest-rate tree

\section*{Syntax}

Arguments

\section*{Description}
```

[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet, Options)

```
BKTree Interest-rate tree structure created by bktree.

Variable containing a collection of NINST instruments. Instruments are categorized by type. Each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the bktree function. NINST instruments from a financial instrument variable, InstSet, are priced. bksens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap '. See instadd for information on instrument types.
Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to bktree. See bktree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to bktree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\). Vega is computed by finite differences in calls to bktree. See bkvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
```

 load deriv;
 BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});
 instdisp(BKSubSet)
    ```
Index Type CouponRate Settle Maturity Period Name ...
1 Bond \(0.03 \quad 01\)-Jan-2004 01 -Jan-2007 \(1 \quad 3 \%\) Bond
2 Bond 0.03 01-Jan-2004 01 -Jan-2008 \(1 \quad 3 \%\) Bond
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 4\% Cap
    [Delta, Gamma] = bksens(BKTree, BKSubSet)
    Delta =
        -285.7151
        -365.7048
        189.5319
    Gamma =
        \(1.0 \mathrm{e}+003\) *
            0.8456
            1.4345
            6.9999

See Also bkprice, bktree, bkvolspec, instadd

\section*{bktimespec}

\section*{Purpose}

\section*{Syntax}

\section*{Arguments}

Compounding

Specify time structure for Black-Karasinski tree
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

ValuationDate Scalar date marking the pricing date and first observation in the tree. Specify as a serial date number or date string.
Maturity \(\quad\) Number of levels (depth) of the tree. A number of levels (NLEVELS)-by-1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order.
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default =-1 (continuous compounding). This argument determines the formula for the discount factors:

Compounding \(=1,2,3,4,6,12\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units, e.g. \(T=F\) is one year.

Compounding \(=365\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.

Compounding \(=-1\)
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.

Description TimeSpec \(=\) bktimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for an BK tree and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bktree. The state observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{bktimespec}

\section*{Examples}

Specify a four-period tree with annual nodes. Use annual compounding to report rates.
```

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'BKTimeSpec'
ValuationDate: 731947
Maturity: [4x1 double]
Compounding: 1
Basis: 0

```

See Also
bktree, bkvolspec, hwtree

\section*{Purpose}

Syntax BKTree = bktree(VolSpec, RateSpec, TimeSpec)
Arguments

Description

\section*{Examples}

Construct Black-Karasinski interest-rate tree

VolSpec Volatility process specification. See bkvolspec for information on the volatility process.

RateSpec Interest-rate specification for the initial rate curve. See variable.

TimeSpec Tree time layout specification. Defines the observation for information on the tree structure.

BKTree = bktree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

Using the data provided, create a BK volatility specification (VolSpec), rate intenvset for information on declaring an interest-rate dates of the BK tree and the Compounding rule for date to time mapping and price-yield formulas. See bktimespec specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a BK tree using bktree.
```

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);

```

\section*{bktree}
```

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', ValuationDate,...
'EndDates', VolDates,...
'Rates', Rates);
BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)
BKTree =
FinObj: 'BKFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.9973 1.9973 2.9973]
dObs: [731947 732312 732677 733042]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}

```

Use treeviewer to observe the tree you have created.
treeviewer(BKTree)


See Also
bkprice, bktimespec, bkvolspec, intenvset

\section*{bkvolspec}

\section*{Purpose}

\section*{Syntax}

Arguments

Description

\section*{Examples}

Specify Black-Karasinski interest-rate volatility process
```

Volspec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates,
AlphaCurve, InterpMethod)

```
\begin{tabular}{ll} 
ValuationDate & \begin{tabular}{l} 
Scalar value representing the observation date of the \\
investment horizon.
\end{tabular} \\
VolDates & \begin{tabular}{l} 
Number of points (NPOINTS) -by-1 vector of yield \\
volatility end dates.
\end{tabular} \\
VolCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of yield volatility values in decimal \\
form.
\end{tabular} \\
AlphaDates & \begin{tabular}{l} 
NPOINTS-by-1 vector of mean reversion end dates.
\end{tabular} \\
AlphaCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of positive mean reversion values in \\
decimal form.
\end{tabular} \\
InterpMethod & \begin{tabular}{l} 
(Optional) Interpolation method. Default is 'linear '. \\
See interp1 for more information.
\end{tabular}
\end{tabular}

Volspec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod) creates a structure specifying the volatility for bktree.

Using the data provided, create a Black-Karasinski volatility specification (VolSpec).
```

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)

```

\section*{bkvolspec}
```

BKVolSpec =

```

\author{
FinObj: 'BKVolSpec' \\ ValuationDate: 731947 \\ VolDates: [4x1 double] \\ VolCurve: [4x1 double] \\ AlphaCurve: 0.1000 \\ AlphaDates: 733408 \\ VolInterpMethod: 'linear'
}

\section*{See Also \\ bktree, interp1}
Purpose Price bond from BDT interest-rate tree
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)} \\
\hline \multirow[t]{9}{*}{Arguments} & BDTTree & Interest-rate tree structure created by bdttree. \\
\hline & CouponRate & Decimal annual rate. \\
\hline & Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. \\
\hline & Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline & Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default \(=2\). \\
\hline & Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline & IssueDate & (Optional) Date when a bond was issued. \\
\hline & FirstCouponDate & (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. \\
\hline
\end{tabular}

\section*{bondbybdt}
\begin{tabular}{ll} 
LastCouponDate & \begin{tabular}{l} 
(Optional) Last coupon date of a bond prior to the \\
maturity date. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The coupon \\
structure of a bond is truncated at the LastCouponDate \\
regardless of where it falls and is followed only by the \\
bond's maturity cash flow date.
\end{tabular} \\
StartDate & \begin{tabular}{l} 
Ignored.
\end{tabular} \\
Face & \begin{tabular}{l} 
(Optional) Face value. Default \(=100\). \\
Options
\end{tabular} \\
& \begin{tabular}{l} 
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular}
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a BDT interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples}

Price a \(10 \%\) bond using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and interest-rate information needed to price the bond.
load deriv;

\section*{bondbybdt}

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;

```

Use bondbybdt to compute the price of the bond.
```

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)
Price =

```
95.5030

See Also
bdttree, bdtprice, instbond

\section*{bondbybk}

Purpose
Price bond from Black-Karasinski interest-rate tree

\section*{Syntax \\ ```
[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, \\ Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, \\ LastCouponDate,StartDate, Face, Options)
```}

Arguments
\begin{tabular}{|c|c|}
\hline BKTree & Forward rate tree structure created by bktree. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default \(=2\). \\
\hline Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline FirstCouponDate & (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. \\
\hline
\end{tabular}
\begin{tabular}{ll}
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond prior to the \\
maturity date. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The coupon \\
structure of a bond is truncated at the LastCouponDate \\
regardless of where it falls and is followed only by the \\
bond's maturity cash flow date.
\end{tabular} \\
StartDate & \begin{tabular}{l}
Ignored.
\end{tabular} \\
Face & (Optional) Face value. Default = 100. \\
Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular}
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the BK tree. The bond argument Settle is ignored.

Description [Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a Black-Karasinski interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples Price a \(4 \%\) bond using a Black-Karasinski interest-rate tree.}

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the bond.
```

load deriv;

```

\section*{bondbybk}

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

```

Use bondbybk to compute the price of the bond.
Price = bondbybk(BKTree, CouponRate, Settle, Maturity) Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
98.0300

\section*{See Also}
bkprice, bktree, hwprice, hwtree, instbond

\section*{Purpose Price bond from HJM interest-rate tree}
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)} \\
\hline \multirow[t]{9}{*}{Arguments} & HJMTree & Forward rate tree structure created by hjmtree. \\
\hline & CouponRate & Decimal annual rate. \\
\hline & Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. \\
\hline & Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline & Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default \(=2\). \\
\hline & Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline & IssueDate & (Optional) Date when a bond was issued. \\
\hline & FirstCouponDate & (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. \\
\hline
\end{tabular}

\section*{bondbyhim}
\begin{tabular}{ll}
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond prior to the \\
maturity date. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The coupon \\
structure of a bond is truncated at the LastCouponDate \\
regardless of where it falls and is followed only by the \\
bond's maturity cash flow date.
\end{tabular} \\
StartDate & \begin{tabular}{l}
Ignored.
\end{tabular} \\
Face & \begin{tabular}{l}
(Optional) Face value. Default = 100. \\
Options
\end{tabular} \\
& \begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular}
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument Settle is ignored.

\section*{Description}

\section*{Examples}
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from an HJM forward-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PBush contains the clean prices.
- PriceTree.AIBush contains the accrued interest.
- PriceTree.tObs contains the observation times.

Price a \(4 \%\) bond using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the bond.
load deriv;

\section*{bondbyhim}

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use bondbyhjm to compute the price of the bond.
Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity) Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
97.5280

See Also
hjmtree, hjmprice, instbond

Purpose
Price bond from Hull-White interest-rate tree
Syntax \begin{tabular}{c}
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, \\
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, \\
\\
LastCouponDate, StartDate, Face, Options)
\end{tabular}
\(\left.\begin{array}{ll}\text { HWTree } & \text { forward-rate tree structure created by hwtree. } \\ \text { CouponRate } & \begin{array}{l}\text { Decimal annual rate. }\end{array} \\ \text { Settle } & \begin{array}{l}\text { Settlement date. A vector of serial date numbers or date } \\ \text { strings. Settle must be earlier than or equal to } \\ \text { Maturity. }\end{array} \\ \text { Maturity } & \begin{array}{l}\text { Maturity date. A vector of serial date numbers or date } \\ \text { strings. }\end{array} \\ \text { Period } & \text { (Optional) Coupons per year of the bond. A vector of } \\ \text { integers. Allowed values are 1, 2, 3, 4, 6, and 12. } \\ \text { Default = 2. }\end{array}\right\}\)
\begin{tabular}{ll}
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond prior to the \\
maturity date. In the absence of a specified \\
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The coupon \\
structure of a bond is truncated at the LastCouponDate \\
regardless of where it falls and is followed only by the \\
bond's maturity cash flow date.
\end{tabular} \\
StartDate & \begin{tabular}{l}
Ignored.
\end{tabular} \\
Face & (Optional) Face value. Default = 100. \\
Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular}
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond argument Settle is ignored.

Description [Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a Hull-White interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree.PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples}

Price a \(4 \%\) bond using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the bond.
```

load deriv;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

```

Use bondbyhw to compute the price of the bond.
Price = bondbyhw(HWTree, CouponRate, Settle, Maturity) Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
98.0483

See Also
bkprice, bktree, hwprice, hwtree, instbond

\section*{Purpose Price bond from set of zero curves}
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)} \\
\hline \multirow[t]{8}{*}{Arguments} & RateSpec & A structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec. \\
\hline & CouponRate & Decimal annual rate. \\
\hline & Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. \\
\hline & Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline & Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default \(=2\). \\
\hline & Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline & IssueDate & (Optional) Date when a bond was issued. \\
\hline
\end{tabular}
\begin{tabular}{ll}
FirstCouponDate & \begin{tabular}{l}
(Optional) Date when a bond makes its first coupon \\
payment. When FirstCouponDate and LastCouponDate \\
are both specified, FirstCouponDate takes precedence in \\
determining the coupon payment structure.
\end{tabular} \\
LastCouponDate & \begin{tabular}{l}
(Optional) Last coupon date of a bond prior to the \\
maturity date. In the absence of a specified
\end{tabular} \\
& \begin{tabular}{l}
FirstCouponDate, a specified LastCouponDate \\
determines the coupon structure of the bond. The coupon \\
structure of a bond is truncated at the LastCouponDate \\
regardless of where it falls and is followed only by the \\
bond's maturity cash flow date.
\end{tabular} \\
StartDate & \begin{tabular}{l}
Ignored.
\end{tabular} \\
Face & (Optional) Face value. Default \(=100\).
\end{tabular}

All inputs are either scalars or number of instruments (NINST)-by-1 vectors unless otherwise specified. Dates can be serial date numbers or date strings. Optional arguments can be passed as empty matrix [].

\section*{Description}

Examples

Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) returns a NINST-by-NUMCURVES matrix of clean bond prices. Each column arises from one of the zero curves.

Price a \(4 \%\) bond using a set of zero curves.
Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the bond.
load deriv;
Set the required values. Other arguments will use defaults.
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Use bondbyzero to compute the price of the bond.

\section*{bondbyzero}
```

Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)
Price =
97.5334

```

See Also
cfbyzero, fixedbyzero, floatbyzero, swapbyzero

\section*{bushpath}

Purpose
Syntax Values = bushpath(Tree, BranchList)

Tree
BranchList

Bushy tree.
Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix containing the sequence of branchings.

Values = bushpath(Tree, BranchList) extracts entries of a node of a bushy tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number one, the second-to-top is two, and so on. Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a bushy tree.

Create an HJM tree by loading the example file.
load deriv;
Then
FwdRates = bushpath(HJMTree.FwdTree, [llll)
returns the rates at the tree nodes located by taking the up branch, then the down branch, and finally the up branch again.

FwdRates =
1.0356
1.0364
1.0526
1.0463

You can visualize this with the treeviewer function.

\section*{bushpath}

\section*{treeviewer(HJMTree)}

See Also bushshape, mkbush

Purpose
Syntax [NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)
Arguments
Tree
[NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree) returns information on a bushy tree's shape.

NumLevels is the number of time levels of the tree.
NumChild is a 1 by number of levels (NUMLEVELS) vector with the number of branches (children) of the nodes in each level.

NumPos is a 1 -by-NUMLEVELS vector containing the length of the state vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each level.

Trim is 1 if NumPos decreases by one when moving from one time level to the next. Otherwise, it is 0 .

Create an HJM tree by loading the example file.
load deriv;
With treeviewer you can see the general shape of the HJM interest-rate tree.

\section*{bushshape}

With this tree
[NumLevels, NumChild, NumPos, NumStates, Trim] =... bushshape (HJMTree.FwdTree)
```

returns
NumLevels =
4
NumChild =
2 2 2 0
NumPos =
4 3 2 1
NumStates =
1 2 4 8
Trim =
1

```

You can recreate this tree using the mkbush function.
Tree \(=\) mkbush(NumLevels, NumChild(1), NumPos(1), Trim);
Tree \(=\) mkbush(NumLevels, NumChild, NumPos);
See Also
bushpath, mkbush
Purpose Price cap instrument from BDT interest-rate tree
\begin{tabular}{|c|c|}
\hline Syntax & [Price, PriceTree] = capbybdt (BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) \\
\hline \multirow[t]{8}{*}{Arguments} & BDTTree Interest-rate tree structure created by bdttree. \\
\hline & \(\begin{array}{ll}\text { Strike } & \begin{array}{l}\text { Number of instruments (NINST)-by-1 vector of rates at } \\ \text { which the cap is exercised. }\end{array}\end{array}\) \\
\hline & \begin{tabular}{l}
Settle \\
Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap.
\end{tabular} \\
\hline & \begin{tabular}{l}
Maturity \\
NINST-by-1 vector of dates representing the maturity dates of the cap.
\end{tabular} \\
\hline & \[
\begin{aligned}
& \text { Reset } \quad \begin{array}{l}
\text { (Optional) NINST-by- } 1 \text { vector representing the frequency } \\
\text { of payments per year. Default }=1 .
\end{array}
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Basis \\
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & Principal (Optional) The notional principal amount. Default \(=100\). \\
\hline & Options (Optional) Derivatives pricing options structure created with derivset. \\
\hline \multirow[t]{4}{*}{Description} & [Price, PriceTree] = capbybdt (BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a BDT interest-rate tree. \\
\hline & Price is the expected price of the cap at time 0. \\
\hline & PriceTree is the tree structure with values of the cap at each node. \\
\hline & The Settle date for every cap is set to the ValuationDate of the BDT tree. The cap argument Settle is ignored. \\
\hline
\end{tabular}

\section*{Examples}

Example 1. Price a \(3 \%\) cap instrument using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use capbybdt to compute the price of the cap instrument.
```

Price = capbybdt(BDTTree, Strike, Settle, Maturity)
Price =

```
28.5191

Example 2. This example shows the pricing of a \(10 \%\) cap instrument using a newly created BDT tree.

First set the required arguments for the three needed specifications.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

```

Next create the specifications.
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.
```

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

```

Set the cap arguments. Remaining arguments will use defaults.
```

CapStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
CapReset = 1;

```

Use capbybdt to find the price of the cap instrument.
Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,... CapReset)

Price =
1.6923

\section*{See Also}
bdttree, cfbybdt, floorbybdt, swapbybdt

\section*{Purpose}

Price cap instrument from Black-Karasinski interest-rate tree
\begin{tabular}{|c|c|}
\hline Syntax & [Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) \\
\hline \multirow[t]{8}{*}{Arguments} & BKTree Interest-rate tree structure created by bktree. \\
\hline & Strike Number of instruments (NINST)-by-1 vector of rates at which the cap is exercised. \\
\hline & \begin{tabular}{l}
Settle \\
Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap.
\end{tabular} \\
\hline & dates of the cap. \\
\hline & \[
\begin{array}{ll}
\text { Reset } & \begin{array}{l}
\text { (Optional) NINST-by-1 vector representing the frequency } \\
\text { of payments per year. Default }=1 .
\end{array}
\end{array}
\] \\
\hline & \[
\text { Basis } \quad \begin{aligned}
& \text { (Optional) Day-count basis of the instrument. A vector of } \\
& \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\
& 2=\text { actual } / 360,3=\mathrm{actual} / 365,4=30 / 360 \text { (PSA), } \\
& 5=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\
& 7=\text { actual/365 (Japanese). }
\end{aligned}
\] \\
\hline & Principal (Optional) The notional principal amount. Default \(=100\). \\
\hline & Options \(\quad \begin{aligned} & \text { (Optional) Derivatives pricing options structure created } \\ & \text { with derivset. }\end{aligned}\) \\
\hline \multirow[t]{4}{*}{Description} & [Price, PriceTree] = capbybk (BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Black-Karasinski interest-rate tree. \\
\hline & Price is the expected price of the cap at time 0. \\
\hline & PriceTree is the tree structure with values of the cap at each node. \\
\hline & The Settle date for every cap is set to the ValuationDate of the BK tree. The cap argument Settle is ignored. \\
\hline
\end{tabular}

\section*{Examples}

Price a 3\% cap instrument using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

```

Use capbybk to compute the price of the cap instrument.
```

Price = capbybk(BKTree, Strike, Settle, Maturity)
Price =

```
 6.8337

See Also
cfbybk, floorbybk, bktree, swapbybk

\section*{Purpose}

Price cap instrument from HJM interest-rate tree
\begin{tabular}{|c|c|}
\hline Syntax & [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) \\
\hline \multirow[t]{8}{*}{Arguments} & HJMTree forward-rate tree structure created by hjmtree. \\
\hline & \begin{tabular}{ll}
Strike & \begin{tabular}{l}
Number of instruments (NINST)-by-1 vector of rates at \\
which the cap is exercised.
\end{tabular}
\end{tabular} \\
\hline & Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap. \\
\hline & NINST-by-1 vector of dates representing the maturity dates of the cap. \\
\hline & \[
\begin{array}{ll}
\text { Reset } & \begin{array}{l}
\text { (Optional) NINST-by-1 vector representing the frequency } \\
\text { of payments per year. Default }=1 .
\end{array}
\end{array}
\] \\
\hline & \begin{tabular}{l}
Basis \\
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & Principal (Optional) The notional principal amount. Default \(=100\). \\
\hline & Options \(\quad\)\begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular} \\
\hline \multirow[t]{4}{*}{Description} & [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from an HJM tree. \\
\hline & Price is the expected price of the cap at time 0 . \\
\hline & PriceTree is the tree structure with values of the cap at each node. \\
\hline & The Settle date for every cap is set to the ValuationDate of the HJM tree. The cap argument Settle is ignored. \\
\hline
\end{tabular}

\section*{Examples}

See Also

Price a 3\% cap instrument using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the cap instrument.
load deriv;
Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use capbyhjm to compute the price of the cap instrument.
```

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)
Price =

```
6.2831
cfbyhjm, floorbyhjm, hjmtree, swapbyhjm

Purpose
\begin{tabular}{|c|c|}
\hline Syntax & [Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) \\
\hline \multirow[t]{8}{*}{Arguments} & HWTree Interest-rate tree structure created by hwtree. \\
\hline & Strike Number of instruments (NINST)-by-1 vector of rates at which the cap is exercised. \\
\hline & \begin{tabular}{l}
Settle \\
Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap.
\end{tabular} \\
\hline & dates of the cap. \\
\hline & \[
\begin{array}{ll}
\text { Reset } & \begin{array}{l}
\text { (Optional) NINST-by-1 vector representing the frequency } \\
\text { of payments per year. Default }=1 .
\end{array}
\end{array}
\] \\
\hline & \[
\text { Basis } \quad \begin{aligned}
& \text { (Optional) Day-count basis of the instrument. A vector of } \\
& \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\
& 2=\text { actual } / 360,3=\mathrm{actual} / 365,4=30 / 360 \text { (PSA), } \\
& 5=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\
& 7=\text { actual/365 (Japanese). }
\end{aligned}
\] \\
\hline & Principal (Optional) The notional principal amount. Default \(=100\). \\
\hline & Options \(\quad \begin{aligned} & \text { (Optional) Derivatives pricing options structure created } \\ & \text { with derivset. }\end{aligned}\) \\
\hline \multirow[t]{4}{*}{Description} & [Price, PriceTree] = capbyhw (HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Hull-White interest-rate tree. \\
\hline & Price is the expected price of the cap at time 0. \\
\hline & PriceTree is the tree structure with values of the cap at each node. \\
\hline & The Settle date for every cap is set to the ValuationDate of the HW tree. The cap argument Settle is ignored. \\
\hline
\end{tabular}

HWTree
Strike

Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap.
Maturity \(\quad\) NINST-by-1 vector of dates representing the maturity dates of the cap.
(Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

Principal (Optional) The notional principal amount. Default \(=100\).
Options (Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Hull-White interest-rate tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the HW tree. The cap argument Settle is ignored.

\section*{Examples}

Price a 3\% cap instrument using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the cap instrument.
load deriv;
Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

```

Use capbyhw to compute the price of the cap instrument.
```

Price = capbyhw(HWTree, Strike, Settle, Maturity)
Price =

```
7.0707

See Also
cfbyhw, floorbyhw, hwtree, swapbyhw

\section*{Purpose}

Price cash flows from BDT interest-rate tree
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)} \\
\hline \multirow[t]{6}{*}{Arguments} & BDTTree & Forward-rate tree structure created by bdttree. \\
\hline & CFlowAmounts & Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline & CFlowDates & NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts. \\
\hline & Settle & Settlement date. A vector of serial date numbers or date strings. The Settle date for every cash flow is set to the ValuationDate of the BDT tree. The cash flow argument, Settle, is ignored. \\
\hline & Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline Description & \multicolumn{2}{|l|}{[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a BDT interest-rate tree.} \\
\hline & \multicolumn{2}{|l|}{Price is an NINST-by-1 vector of expected prices at time 0.} \\
\hline & \multicolumn{2}{|l|}{PriceTree is a tree structure with a vector of instrument prices at each no} \\
\hline
\end{tabular}
[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a BDT interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{cfbybdt}

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the instruments.
load deriv;
The valuation date (settle date) specified in BDTTree is January 1, 2000 (date number 730486).
```

BDTTree.RateSpec.ValuationDate
ans =
730486

```

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947;
730852, 731217, 731582, 731947];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, ...
CFlowDates, BDTTree.RateSpec.ValuationDate)
Price =
7 4 . 0 1 1 2
74.3671
PriceTree =
FinObj: 'BDTPriceTree'
tObs: [0 1.00 2.00 3.00 4.00]
PTree: {1x5 cell}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)

See Also
bdttree, bdtprice, cfamounts, instcf
Purpose Price cash flows from Black-Karasinski interest-rate tree
\begin{tabular}{|c|c|}
\hline Syntax & [Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) \\
\hline \multirow[t]{6}{*}{Arguments} & BKTree forward-rate tree structure created by bktree. \\
\hline & CFlowAmounts Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline & \begin{tabular}{l}
CFlowDates \\
NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts.
\end{tabular} \\
\hline & Settle Settlement date. A vector of serial date numbers or date strings. The Settle date for every cash flow is set to the ValuationDate of the BK tree. The cash flow argument, Settle, is ignored. \\
\hline & \[
\begin{array}{ll}
\text { Basis } & \begin{array}{l}
\text { (Optional) Day-count basis of the instrument. A vector of } \\
\text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\
2=\text { actual/360, } 3=\text { actual } / 365,4=30 / 360(P S A), \\
5
\end{array} \\
& 7=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\
& 7 \text { (Japanese). }
\end{array}
\] \\
\hline & Options \(\quad \begin{aligned} & \text { (Optional) Derivatives pricing options structure created } \\ & \text { with derivset. }\end{aligned}\) \\
\hline \multirow[t]{3}{*}{Description} & [Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a Black-Karasinski interest-rate tree. \\
\hline & Price is an NINST-by-1 vector of expected prices at time 0. \\
\hline & PriceTree is a tree structure with a vector of instrument prices at each node. \\
\hline
\end{tabular}

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the instruments.
load deriv;
The valuation date (settle date) specified in BKTree is January 1, 2004 (date number 731947).

BKTree.RateSpec.ValuationDate
ans =

731947
Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774;
732678, 733034, 733408, 734774];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,...
BKTree.RateSpec.ValuationDate)
Price =
93.3600
81.6218
PriceTree =
FinObj: 'BKPriceTree'
tObs: [0 1 2 3 4]
PTree: {[2x1 double] [2x3 double] [2x5 double] [2x5 double]
[2x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)

See Also
bktree, bkprice, cfamounts, instcf

Purpose
Price cash flows from HJM interest-rate tree
\begin{tabular}{|c|c|}
\hline Syntax & [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) \\
\hline \multirow[t]{6}{*}{Arguments} & HJMTree forward-rate tree structure created by hjmtree. \\
\hline & CFlowAmounts Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline & \begin{tabular}{l}
CFlowDates \\
NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts.
\end{tabular} \\
\hline & Settle Settlement date. A vector of serial date numbers or date strings. The Settle date for every cash flow is set to the ValuationDate of the HJM tree. The cash flow argument, Settle, is ignored. \\
\hline & \[
\text { Basis } \quad \begin{aligned}
& \text { (Optional) Day-count basis of the instrument. A vector of } \\
& \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\
& 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360 \text { (PSA), } \\
& 5=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\
& 7=\text { actual/365 (Japanese). }
\end{aligned}
\] \\
\hline & Options \(\quad\)\begin{tabular}{l}
(Optional) Derivatives pricing options structure created \\
with derivset.
\end{tabular} \\
\hline \multirow[t]{3}{*}{Description} & [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from an HJM interest-rate tree. \\
\hline & Price is an NINST-by-1 vector of expected prices at time 0 . \\
\hline & PriceTree is a tree structure with a vector of instrument prices at each node. \\
\hline Examples & Price a portfolio containing two cash flow instruments paying interest annually over the four year period from January 1, 2000 to January 1, 2004. \\
\hline
\end{tabular}

\section*{cfbyhim}

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the instruments.
```

load deriv;

```

The valuation date (settle date) specified in HJMTree is January 1, 2000 (date number 730486).

HWTree.RateSpec.ValuationDate
ans \(=\)
730486
Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 O 6 105];
CFlowDates = [730852, NaN, 731582, 731947;
730852, 731217, 731582, 731947];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,...
CFlowDates, HJMTree.RateSpec.ValuationDate)
Price =
96.7805
97.2188
PriceTree =
FinObj: 'HJMPriceTree'
tObs: [0 1.00 2.00 3.00 4.00]
PBush: {1x5 cell}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
```

treeviewer(PriceTree)

```


See Also
cfamounts, hjmprice, hjmtree, instcf
Purpose Price cash flows from Hull-White interest-rate tree
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)} \\
\hline \multirow[t]{6}{*}{Arguments} & HWTree & forward-rate tree structure created by hwtree. \\
\hline & CFlowAmounts & Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs. \\
\hline & CFlowDates & NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts. \\
\hline & Settle & Settlement date. A vector of serial date numbers or date strings. The Settle date for every cash flow is set to the ValuationDate of the HW tree. The cash flow argument, Settle, is ignored. \\
\hline & Basis & \begin{tabular}{l}
(Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
\(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \\
\(5=30360\) (ISDA), \(6=30 / 360\) (European), \\
7 = actual/365 (Japanese).
\end{tabular} \\
\hline & Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline Description & \multicolumn{2}{|l|}{[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a Hull-White interest-rate tree.} \\
\hline & \multicolumn{2}{|l|}{Price is an NINST-by-1 vector of expected prices at time 0.} \\
\hline & \multicolumn{2}{|l|}{PriceTree is a tree structure with a vector of instrument prices at each node.} \\
\hline
\end{tabular}

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the instruments.
```

load deriv;

```

The valuation date (settle date) specified in HWTree is January 1, 2004 (date number 731947).

HWTree.RateSpec.ValuationDate
ans \(=\)
731947
Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408, 733774;
732678, 733034, 733408, 734774];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,...
HWTree.RateSpec.ValuationDate)
Price =
93.3789
81.7651
PriceTree =
FinObj: 'HWPriceTree'
tObs: [0 1 2 3 4]
PTree: {[2x1 double] [2x3 double] [2x5 double] [2x5 double]
[2x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
treeviewer(PriceTree)

\section*{See Also}
cfamounts, hwtree, hwprice, instcf

\section*{Purpose}

Price cash flows from set of zero curves
Syntax Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis)

Arguments integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

CFlowAmounts Number of instruments (NINST) by maximum number of

CFlowDates NINST-by-MOSTCFSmatrix of cash flow dates. Eachentry contains the serial date of the corresponding cash flow in CFlowAmounts.

Settle Settlement date on which the cash flows are priced.
Basis (Optional) Day-count basis of the instrument. A vector of
A structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec. cash flows (MOSTCFS) matrix with entries listing cash flow amounts corresponding to each date in CFlowDates. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.

Description Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis) computes Price, an NINST-by-NUMCURVES matrix of cash flows prices. Each column arises from one of the zero curves.

Examples
Price a portfolio containing two cash flow instruments paying interest annually over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides ZeroRateSpec. The ZeroRateSpec structure contains the interest-rate information needed to price the instruments.
```

load deriv
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;
730852, 731217, 731582, 731947];
Settle = 730486;
Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)
Price =
96.7804
97.2187

```
See Also
bondbyzero, fixedbyzero, floatbyzero, swapbyzero

\section*{Purpose}
\begin{tabular}{|c|c|}
\hline Syntax & ```
Obj = classfin(ClassName)
Obj = classfin(Struct, ClassName)
ClassName = classfin(Obj)
``` \\
\hline \multirow[t]{3}{*}{Arguments} & ClassName String containing name of financial structure class. \\
\hline & Struct MATLAB structure to be converted into a financial structure. \\
\hline & Obj Name of a financial structure. \\
\hline Description & \begin{tabular}{l}
Obj = classfin(ClassName) and Obj = classfin(Struct, ClassName) create a financial structure of class ClassName. \\
ClassName \(=\) classfin( Obj ) returns a string containing a financial structure's class name.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Examples} & Example 1. Create an HJMTimeSpec financial structure and complete its fields. (Typically, the function hjmtimespec is used to create HJMTimeSpec structures).
```

TimeSpec = classfin('HJMTimeSpec');
TimeSpec.ValuationDate = datenum('Dec-10-1999');
TimeSpec.Maturity = datenum('Dec-10-2002');
TimeSpec.Compounding = 2;
TimeSpec.Basis = 0;
TimeSpec.EndMonthRule = 1;
TimeSpec =

``` \\
\hline & ```
            FinObj: 'HJMTimeSpec'
ValuationDate: 730464
    Maturity: 731560
    Compounding: 2
        Basis: 0
    EndMonthRule: 1
``` \\
\hline
\end{tabular}

\section*{classfin}

Example 2. Convert an existing MATLAB structure into a financial structure.
```

TSpec.ValuationDate = datenum('Dec-10-1999');
TSpec.Maturity = datenum('Dec-10-2002');
TSpec.Compounding = 2;
TSpec.Basis = 0;
TSpec.EndMonthRule = 0;
TimeSpec = classfin(TSpec, 'HJMTimeSpec')
TimeSpec =

```
ValuationDate: 730464
 Maturity: 731560
 Compounding: 2
 Basis: 0
 EndMonthRule: O
 FinObj: 'HJMTimeSpec'

Example 3. Obtain a financial structure's class name.
load deriv.mat
ClassName = classfin(HJMTree)
ClassName =
HJMFwdTree

\section*{See Also \\ isafin}

Purpose

\section*{Syntax}

Arguments

Price compound option from CRR binomial tree
```

[Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike,
CSettle, CExerciseDates, CAmericanOpt)

```
\begin{tabular}{ll}
CRRTree & Stock tree structure created by crrtree. \\
UOptSpec & String = 'Call' or 'Put'. \\
UStrike & 1-by-1 vector of strike price values. \\
USettle & 1-by-1 vector of Settle dates. \\
UExerciseDates & \begin{tabular}{l}
For a European option (UAmericanOpt \(=0):\) \\
\\
\end{tabular} \begin{tabular}{l}
1-by-1 vector of exercise dates. For a European option, \\
there is only one exercise date, the option expiry date.
\end{tabular}
\end{tabular}

For an American option (UAmericanOpt = 1):
1-by-2 vector of exercise date boundaries. The option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates is 1-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.
UAmericanOpt If UAmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If UAmericanOpt \(=1\), the option is an American option.

COptSpec

CStrike NINST-by-1 vector of strike price values. Each row is the schedule for one option.

1-by-1 vector containing the settlement or trade date.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{CExerciseDates} & For a European option (CAmerican0pt \(=0\)): \\
\hline & NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date. \\
\hline & For an American option (CAmerican0pt = 1): \\
\hline & NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date. \\
\hline CAmerican0pt & (Optional) If CAmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If CAmericanOpt \(=1\), the option is an American option. \\
\hline
\end{tabular}

Description

Examples Price a compound option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
```

load deriv

```

Set the required values. Other arguments will use defaults.
```

UOptSpec = 'Call ;
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;

```
```

COptSpec = 'Put';
CStrike = 5;
CSettle = 01-Jan-2003 ;
CExerciseDates = '01-Jan-2005';
Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
Price =
2.8482

```

See Also crrtree, instcompound
References Rubinstein, Mark, "Double Trouble," Risk 5, 1991, p. 73.
Purpose Price compound option from EQP binomial tree
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)} \\
\hline \multirow[t]{12}{*}{Arguments} & EQPTree & Stock tree structure created by eqptree. \\
\hline & UOptSpec & String = 'Call ' or 'Put'. \\
\hline & UStrike & 1-by-1 vector of strike price values. \\
\hline & USettle & 1-by-1 vector of Settle dates. \\
\hline & UExerciseDates & For a European option (UAmericanOpt = 0): \\
\hline & & 1-by-1 vector of exercise dates. For a European option, there is only one exercise date, the option expiry date. \\
\hline & & For an American option (UAmericanOpt = 1): \\
\hline & & 1-by-2 vector of exercise date boundaries. The option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates is 1-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date. \\
\hline & UAmericanOpt & If UAmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If UAmericanOpt \(=1\), the option is an American option. \\
\hline & COptSpec & NINST-by-1 list of string values 'Call' or 'Put' of the compound option. \\
\hline & CStrike & NINST-by-1 vector of strike price values. Each row is the schedule for one option. \\
\hline & CSettle & 1-by-1 vector containing the settlement or trade date. \\
\hline
\end{tabular}
CExerciseDates For a European option (CAmericanOpt \(=0\)):
NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
For an American option (CAmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.
CAmericanOpt If CAmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If CAmericanOpt \(=1\), the option is an American option.

Description

Examples
[Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option.
Price is a NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Price a compound option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
```

load deriv

```

Set the required values. Other arguments will use defaults.
```

UOptSpec = 'Call ;
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;

```

\section*{compoundbyeqp}
```

COptSpec = 'Put';
CStrike = 5;
CSettle = 01-Jan-2003 ;
CExerciseDates = '01-Jan-2005';
Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
Price =
3.3931

```
References Rubinstein, Mark, "Double Trouble," Risk 5, 1991, p. 73
See Also eqptree, instcompound

\section*{Purpose}

Arguments

\section*{Description}

Syntax [Price, PriceTree] = crprice(CRRTree, InstSet, Options)
Instrument prices from CRR tree
```

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

```

CRRTree Interest-rate tree structure created by crrtree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = crrprice(CRRTree, InstSet, Options) computes stock option prices using a CRR binomial tree created with crrtree.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree. PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.
crrprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are
- asianbycrr: Price an Asian option from a CRR tree.
- barrierbycrr: Price a barrier option from a CRR tree.
- compoundbycrr: Price a compound option from a CRR tree.
- lookbackbycrr: Price a lookback option from a CRR tree.
- optstockbycrr: Price an American, Bermuda, or European option from a CRR tree.

Examples
Load the CRR tree and instruments from the data file deriv.mat. Price the barrier and lookback options contained in the instrument set.
```

load deriv.mat;
CRRSubSet = instselect(CRRInstSet,'Type', ...
{'Barrier', 'Lookback'});
instdisp(CRRSubSet)

```
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...
1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call \(115 \quad 01\)-Jan-2003 01 -Jan-2006 000 Lookback1 7
3 Lookback call 115 01-Jan-2003 01-Jan-2007 \(0 \quad\) Lookback2 9
 [Price, PriceTree] = crrprice(CRRTree, CRRSubSet)
 Price =
 12.1272
 7.6015
 11.7772
 PriceTree =
 FinObj: 'BinPriceTree'
 PTree: \{1x5 cell\}
 tObs: [lllll \(\left.0 \begin{array}{llll}0 & 1 & 3 & 4\end{array}\right]\)
 dObs: [731582 731947732313732678 733043]

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, CRRSubSet)

Barrier 1

Lookback 1

Lookback2

See Also crrsens, crrtree, instadd

Purpose

\section*{Syntax}

Arguments

\section*{Description}

Instrument prices and sensitivities from CRR tree
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

CRRTree Interest-rate tree structure created by crrtree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = crrsens(BDTTree, InstSet, Options) computes dollar sensitivities and prices for instruments using a binomial tree created with crrtree. NINST instruments from a financial instrument variable, InstSet, are priced. crrsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd for information on instrument types.
Delta is an NINST-by-1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the stock price. Delta is computed by finite differences in calls to crrtree. See crrtree for information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the stock price. Gamma is computed by finite differences in calls to crrtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility of the stock. Vega is computed by finite differences in calls to crrtree.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.
```

Examples
Load the CRR tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of the barrier and lookback options contained in the instrument set.

```
```

load deriv.mat;

```
load deriv.mat;
CRRSubSet = instselect(CRRInstSet,'Type', ...
CRRSubSet = instselect(CRRInstSet,'Type', ...
{'Barrier', 'Lookback });
{'Barrier', 'Lookback });
instdisp(CRRSubSet)
instdisp(CRRSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...
1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1 7
L Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9
[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)
Delta =
0.6885
0.6049
0.8187
Gamma =
 0.0310
-0.0000
0.0000
```

See Also crrprice, crrtree

Purpose

## Syntax

Arguments

Description

Examples

Specify time structure for a CRR tree
TimeSpec $=$ crrtimespec(ValuationDate, Maturity, NumPeriods)

ValuationDate Scalar date indicating the pricing date and first observation in the tree. A serial date number or date string.

Maturity Scalar date indicating depth of the tree.
NumPeriods Scalar determining number of time steps in the tree.

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods) sets the number of levels and node times for a CRR binomial tree.

TimeSpec is a structure specifying the time layout for a CRR binomial tree.
Specify a four period CRR tree with time steps of one year.

```
ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)
TimeSpec =
FinObj: 'BinTimeSpec'
ValuationDate: 731398
 Maturity: 732859
 NumPeriods: 4
 Basis: 0
 EndMonthRule: 1
```


## See Also

crrtree, stockspec

## Purpose

Syntax CRRTree $=$ crrtree(StockSpec, RateSpec, TimeSpec)
Arguments

## Description

## Examples

Construct a CRR stock tree

```
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)
```

StockSpec Stock specification. See stockspec for information on creating a stock specification.

RateSpec Interest-rate specification for the initial risk free rate curve. See intenvset for information on declaring an interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation dates of the CRR binomial tree. See crrtimespec for information on the tree structure.

Note The standard CRR tree assumes a constant interest rate, but RateSpec allows you to specify an interest-rate curve with varying rates. If you specify variable interest rates, the resulting tree will not be a standard CRR tree.

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec) creates a structure specifying the time layout for a CRR binomial tree.

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a CRR tree with crrtree.

```
Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
```

```
StockSpec =
 FinObj: 'StockSpec'
 Sigma: 0.2000
 AssetPrice: 50
 DividendType: 'cash'
 DividendAmounts: [4x1 double]
 ExDividendDates: [4x1 double]
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')
RateSpec =
 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9519
 Rates: 0.0500
 EndTimes: 1.9945
 StartTimes: 0
 EndDates: 731946
 StartDates: 731582
 ValuationDate: 731582
 Basis: 0
 EndMonthRule: 1
ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)
TimeSpec =
 FinObj: 'BinTimeSpec'
 ValuationDate: 731582
 Maturity: 731946
 NumPeriods: 4
 Basis: 0
 EndMonthRule: 1
```

```
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)
CRRTree =
```

    FinObj: 'BinStockTree'
        Method: 'CRR'
    StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.24930 .49860 .74790 .9972 ]
dObs: [731582 731672731763731856 731946]
STree: \{1x5 cell\}
UpProbs: [0.5370 0.5370 0.5370 0.5370]

Use treeviewer to observe the tree you have created.


## See Also

crrtimespec, intenvset, stockspec

## Purpose Convert inverse-discount tree to interest-rate tree

```
Syntax RateTree = cvtree(Tree)
Arguments Tree Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White,
 or Black-Karasinski tree structure utilizing
 inverse-discount notation for forward rates.
Description RateTree = cvtree(Tree) converts a tree structure utilizing inverse-discount
notation to a tree structure utilizing rate notation for forward rates.
Examples
Convert a Hull-White tree using inverse-discount notation to a Hull-White tree displaying interest-rate notation.
```

```
load deriv;
```

load deriv;
HWTree
HWTree
HWTree =
HWTree =
FinObj: 'HWFwdTree'
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
tObs: [0 1 2 3]
dObs: [731947 732313 732678 733043]
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3\times1 double] [2x1 double] [4]}
CFlowT: {[4x1 double] [3\times1 double] [2x1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}
FwdTree: {1x4 cell}
HWTree.FwdTree{1}
HWTree.FwdTree{1}
ans =
ans =
1.0279

```
 1.0279
```

```
HWTree.FwdTree{2}
ans =
 1.0528 1.0356 1.0186
```

Use treeviewer to display the path of interest rates expressed in inverse-discount notation.

```
treeviewer(HWTree)
```



Use cvtree to convert the inverse-discount notation to interest-rate notation.

```
RTree = cvtree(HWTree)
RTree =
 FinObj: 'HWRateTree'
 VolSpec: [1x1 struct]
 TimeSpec: [1x1 struct]
 RateSpec: [1x1 struct]
 tObs: [l0 1 2 3]
```

```
 dObs: [l731947 732313 732678 733043]
 CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
 Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
 Connect: {[2] [2 3 4] [2 2 2 3 4 4]}
RateTree: {1x4 cell}
RTree.RateTree{1}
ans =
 0.0275
RTree.RateTree{2}
ans =
 0.0514 0.0349 0.0185
```

Now use treeviewer to display the converted tree, showing the path of interest rates expressed as forward rates.


## See Also

disc2rate, rate2disc

Purpose

## Syntax

Arguments
Settle

Dates A vector of dates corresponding to the compounding value.

Compounding (Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12($ Default $=2$.
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the compounding frequency, $Z$ is the zero rate, and $T$ is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number of days in the basis year and $T$ is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp \left(-T^{*} Z\right)$, where $T$ is time in years.

Basis	(Optional) Day-count basis of the instrument. A vector of   integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
$2=$ actual/360, $3=\mathrm{actual} / 365,4=30 / 360$ (PSA),	
$5=30360$ (ISDA), $6=30 / 360$ (European),	
$7=$ actual/365 (Japanese).	

Description

See Also
[Times, F] = date2time(Settle, Dates, Compounding, Basis, EndMonthRule) computes time factors appropriate to compounded rate quotes beyond the settlement date.

Times is a vector of time factors.
$F$ is a scalar of related compounding frequencies.

Note To obtain accurate results from this function, the Basis and Dates arguments must be consistent. If the Dates argument contains months that have 31 days, Basis must be one of the values that allow months to contain more than 30 days, e.g., Basis $=0,3$, or 7 .
date2time is the inverse of time2date.
cftimes in the Financial Toolbox documentation
disc2rate, rate2disc, time2date

Purpose

Syntax $\quad$ datedisp (NumMat, DateForm)	
	CharMat $=$ datedisp(NumMat, DateForm)

Display date entries
datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Description

Examples

See Also
Remarks

NumMat Numeric matrix to display
DateForm (Optional) Date format. See datestr for available and default format flags.
datedisp(NumMat, DateForm) displays the matrix with the serial dates formatted as date strings, using a matrix with mixed numeric entries and serial date number entries. Integers between datenum ('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is assigned, the function prints the array to the display.

```
NumMat = [730730, 0.03, 1200, 730100;
 730731, 0.05, 1000, NaN]
NumMat =
 1.0e+05 *
 7.3073 0.0000 0.0120 7.3010
 7.3073 0.0000 0.0100 NaN
datedisp(NumMat)
 01-Sep-2000 0.03 1200 11-Dec-1998
 02-Sep-2000 0.05 1000 NaN
```

datenum, datestr in the Financial Toolbox documentation

This function is identical to the datedisp function in the Financial Toolbox.

## derivget

## Purpose Get derivatives pricing options

```
Syntax Value = derivget(Options, 'Parameter')
```

Arguments Options Existing options specification structure, probably created from previous call to derivset.

Parameter Must be 'Diagnostics', 'Warnings', 'ConstRate', or 'BarrierMethod '. It is sufficient to type only the leading characters that uniquely identify the parameter. Case is ignored for parameter names.

Description Value = derivget(Options, 'Parameter') extracts the value of the named parameter from the derivative options structure Options. Parameter values can be 'off' or 'on', except for 'BarrierMethod', which can be ' unenhanced ' or 'interp'. Specifying 'unenhanced' uses no correction calculation.
Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.

## Examples

Example 1. Create an Options structure with the value of Diagnostics set to 'on'.

```
Options = derivset('Diagnostics','on')
```

Use derivget to extract the value of Diagnostics from the Options structure.

```
Value = derivget(Options, 'Diagnostics')
Value =
on
```

Example 2. Use derivget to extract the value of ConstRate.

```
Value = derivget(Options, 'ConstRate')
Value =
on
```

Because the value of 'ConstRate' was not previously set with derivset, the answer represents the default setting for 'ConstRate'.

Example 3. Find the value of 'BarrierMethod' in this structure. derivget(Options ,'BarrierMethod')
ans =
unenhanced

## See Also

barrierbycrr, barrierbyeqp, derivset

Purpose

## Syntax

Arguments

## Description

Set or modify derivatives pricing options

```
Options = derivset(Options, 'Parameter1', Value1, ... 'Parameter4',
 Value4)
Options = derivset(OldOptions, NewOptions)
Options = derivset
derivset
```

Options (Optional) Existing options specification structure, probably created from a previous call to derivset.

Parametern The parameter must be 'Diagnostics', 'Warnings', 'ConstRate', or 'BarrierMethod'. Parameters can be entered in any order.
Valuen (BDT, BK, HJM, or HW pricing only) The parameter values for the following three options can be 'on' or 'off':

- 'Diagnostics' 'on' generates diagnostic information. The default is 'Diagnostics' 'off'.
- 'Warnings' 'on' (default) displays a warning message when executing a pricing function.
- 'ConstRate' 'on' (default) assumes a constant rate between tree nodes.

For pricing barrier options, the 'BarrierMethod' pricing option can be 'unenhanced' (default) or 'interp'. Specifying 'unenhanced ' uses no correction calculation. Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.

OldOptions Existing options specification structure.
NewOptions New options specification structure.

Options = derivset(Options, 'Parameter1', Value1, ... 'Parameter4', Value4) creates a derivatives pricing options structure Options in which the named parameters have the specified values. Any unspecified value is set to
the default value for that parameter when Options is passed to the pricing function. It is sufficient to type only the leading characters that uniquely identify the parameter name. Case is also ignored for parameter names.

If the optional input argument Options is specified, derivset modifies an existing pricing options structure by changing the named parameters to the specified values.

Note For parameter values, correct case and the complete string are required; if an invalid string is provided, the default is used.

Options = derivset(OldOptions, NewOptions) combines an existing options structure OldOptions with a new options structure NewOptions. Any parameters in NewOptions with nonempty values overwrite the corresponding old parameters in OldOptions.

Options = derivset creates an options structure Options whose fields are set to the default values.
derivset with no input or output arguments displays all parameter names and information about their possible values.

## Examples

```
Options = derivset('Diagnostics','on')
```

enables the display of additional diagnostic information that appears when executing pricing functions.

```
Options = derivset(Options, 'ConstRate', 'off')
```

changes the ConstRate parameter in the existing Options structure so that the assumption of constant rates between tree nodes no longer applies.

With no input or output arguments derivset displays all parameter names and information about their possible values.

## derivset

derivset

```
 Diagnostics: [on | {off}]
 Warnings: [{on} | off]
 ConstRate: [{on} | off]
BarrierMethod: [{unenhanced} | interp]
```

See Also
barrierbycrr, barrierbyeqp, derivget

## Purpose

## Syntax <br> Usage 1: Interval points are input as times in periodic units. <br> Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Arguments
Interest rates from cash flow discounting factors

Usage 2: ValuationDate is passed and interval points are input as dates.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate)

Compounding Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the compounding frequency, $Z$ is the zero rate, and $T$ is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number of days in the basis year and $T$ is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp (-T * Z)$, where $T$ is time in years.
Disc Number of points (NPOINTS) by number of curves (NCURVES) matrix of discounts. Disc are unit bond prices over investment intervals from StartTimes, when the cash flow is valued, to EndTimes, when the cash flow is received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units ending the interval to discount over.

## disc2rate

StartTimes	(Optional) NPOINTS-by-1 vector or scalar of times in   periodic units starting the interval to discount over.   Default $=0$.
EndDates	NPOINTS-by-1 vector or scalar of serial maturity dates   ending the interval to discount over.
StartDates	(Optional) NPOINTS-by-1 vector or scalar of serial dates   starting the interval to discount over. Default $=$   ValuationDate.
ValuationDate	Scalar value in serial date number form representing the   observation date of the investment horizons entered in   StartDates and EndDates. Required in Usage 2.   Omitted or passed as an empty matrix to invoke Usage

## Description

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes) and [Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate) convert cash flow discounting factors to interest rates. disc2rate computes the yields over a series of NPOINTS time intervals given the cash flow discounts over those intervals. NCURVES different rate curves can be translated at once if they have the same time structure. The time intervals can represent a zero or a forward curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over the NPOINTS time intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to discount over, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the interval to discount over, measured in periodic units.

If Compounding $=365$ (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, $T$, computed from SIA semiannual time factors, Tsemi, by the formula $T=T s e m i / 2 * F$, where $F$ is the compounding frequency.

Specify the investment intervals with either input times (Usage 1) or input dates (Usage 2). Entering ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

See Also rate2disc, ratetimes

Purpose
Instrument prices from EQP binomial tree

## Syntax

Arguments

## Description

```
[Price, PriceTree] = crrprice(EQPTree, InstSet, Options)
```

EQPTree Interest-rate tree structure created by eqptree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options) computes stock option prices using an EQP binomial tree created with eqptree.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree. PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.
eqpprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are

- asianbyeqp: Price an Asian option from an EQP tree.
- barrierbyeqp: Price a barrier option from an EQP tree.
- compoundbyeqp: Price a compound option from an EQP tree.
- lookbackbyeqp: Price a lookback option from an EQP tree.
- optstockbyeqp: Price an American, Bermuda, or European option from an EQP tree.

Examples
Load the EQP tree and instruments from the data file deriv.mat. Price the put options contained in the instrument set.

```
load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')
instdisp(EQPSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name...
1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 0 Put 105...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType...
2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic...
3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...
 [Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)
 Price =
 2.6375
 4.7444
 3.9178
 PriceTree =
 FinObj: 'BinPriceTree'
 PTree: {1x5 cell}
 tObs: [00 1 2 2 3 4]
 dObs: [731582 731947 732313 732678 733043]
```

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, EQPSubSet)


Putl


Asian 11


Asian2

See Also
eqpsens, eqptimespec, eqptree

## Purpose

## Syntax

Arguments

## Description

Instrument prices and sensitivities from EQP binomial tree

```
[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet, Options)
```

EQPTree Interest-rate tree structure created by eqptree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet, Options) computes dollar sensitivities and prices for instruments using a binomial tree created with eqptree. NINST instruments from a financial instrument variable, InstSet, are priced. eqpsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the stock price. Delta is computed by finite differences in calls to eqptree. See eqptree for information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the stock price. Gamma is computed by finite differences in calls to eqptree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility of the stock. Vega is computed by finite differences in calls to eqptree.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Examples
路
Load the EQP tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of the put options contained in the instrument set.

```
load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')
instdisp(EQPSubSet)
```

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name...
1 OptStock put 105 01-Jan-2003 01-Jan-2006 $0 \quad$ Put 105...
Index Type OptSpec Strike Settle ExerciseDates American0pt AvgType...
2 Asian put 110 01-Jan-2003 01-Jan-2006 0rithmetic...
3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...
[Delta, Gamma] = eqpsens(EQPTree, EQPSubSet)
Delta =
$-0.2336$
-0. 5443
-0.4516
Gamma =
0.0218
0.0000
0.0000

See Also
eqpprice, eqptree

## Purpose

## Syntax

## Arguments

Description

## Examples

Specify a four period tree with time steps of one year.

```
ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)
 TimeSpec =
```

            FinObj: 'BinTimeSpec'
            ValuationDate: 731398
            Maturity: 732859
            NumPeriods: 4
            Basis: 0
            EndMonthRule: 1
    See Also
eqptree, stockspec

Purpose
Construct EQP stock tree

## Syntax

Arguments

## Description

Examples equal probabilities tree. probabilities stock tree. probabilities stock tree.

EQPTree $=$ eqptree (StockSpec, RateSpec, TimeSpec)

StockSpec Stock specification. See stockspec for information on creating a stock specification.

RateSpec Interest-rate specification for the initial risk free rate curve. See intenvset for information on declaring an interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation dates of the equal probabilities binomial tree. See eqptimespec for information on the tree structure.

Note The standard equal probabilities tree assumes a constant interest rate, but RateSpec allows you to specify an interest-rate curve with varying rates. If you specify variable interest rates, the resulting tree will not be a standard

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec) constructs an equal

EQPTree is a MATLAB structure specifying the time layout for an equal

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a CRR tree with crrtree.

```
Sigma = 0.20;
```

Sigma = 0.20;
AssetPrice = 50;
AssetPrice = 50;
DividendType = 'cash';
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'}

```
'01-Oct-2003'}
```

```
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
 FinObj: 'StockSpec'
 Sigma: 0.2000
 AssetPrice: 50
 DividendType: 'cash'
 DividendAmounts: [4x1 double]
 ExDividendDates: [4\times1 double]
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')
RateSpec =
 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9519
 Rates: 0.0500
 EndTimes: 1.9945
 StartTimes: 0
 EndDates: 731946
 StartDates: 731582
 ValuationDate: 731582
 Basis: 0
 EndMonthRule: 1
ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)
TimeSpec =
 FinObj: 'BinTimeSpec'
 ValuationDate: 731582
 Maturity: 731946
 NumPeriods: 4
 Basis: 0
EndMonthRule: 1
```

```
EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
EQPTree =
 FinObj: 'BinStockTree'
 Method: 'EQP'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
 tObs: [l0 0.2493 0.4986 0.7479 0.9972]
 dObs: [731582 731672 731763 731856 731946]
 STree: {1x5 cell}
 UpProbs: [0.5000 0.5000 0.5000 0.5000]
```

Use treeviewer to observe the tree you have created.


See Also
eqptimespec, intenvset, stockspec

Purpose
Price fixed-rate note from BDT interest-rate tree

Syntax	[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	BDTTree Interest-rate tree structure created by bdttree.
	CouponRate Decimal annual rate.
	Settle Settlement dates. Number of instruments (NINST)-by-1   vector of dates representing the settlement dates of the   fixed-rate note.
	NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by-1 vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	Basis   (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal (Optional) The notional principal amount. Default $=100$.
	Options (Optional) Derivatives pricing options structure created with derivset.
Description	[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a BDT interest-rate tree.
	Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
	PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.
	PriceTree. PTree contains the clean prices.
	PriceTree.AITree contains the accrued interest.
	PriceTree.tObs contains the observation times.

Settle Settlement dates. Number of instruments (NINST)-by-1
vector of dates representing the settlement dates of the
fixed-rate note.
NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.
Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default $=1$.
(Optional) Day-count basis of the instrument. A vector of
integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
$2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,
$5=30360$ (ISDA), $6=30 / 360$ (European),
7 = actual/365 (Japanese).
Principal (Optional) The notional principal amount. Default $=100$.
Options (Optional) Derivatives pricing options structure created
with derivset.
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a BDT interest-rate tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

## fixedbybdt

The Settle date for every fixed-rate note is set to the ValuationDate of the BDT tree. The fixed-rate note argument Settle is ignored.

## Examples

See Also
Price a $10 \%$ fixed-rate note using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the note.
load deriv
Set the required values. Other arguments will use defaults.

```
CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Reset = 1;
```

Use fixedbybdt to compute the price of the note.
Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)
Price =
92.9974
bdttree, bondbybdt, capbybdt, cfbybdt, floatbybdt, floorbybdt, swapbybdt

## fixedbybk

## Purpose

Price fixed-rate note from Black-Karasinski interest-rate tree

Syntax	[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	BKTree Interest-rate tree structure created by bktree.
	CouponRate Decimal annual rate.
	Settle   Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the fixed-rate note.
	Maturity   NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by-1 vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	$\text { Basis } \quad \begin{aligned} & \text { (Optional) Day-count basis of the instrument. A vector of } \\ & \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ & 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360 \text { (PSA), } \\ & 5=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ & 7=\text { actual/365 (Japanese). } \end{aligned}$
	Principal (Optional) NINST-by-1 vector of the notional principal amount. Default = 100 .
	Options $\quad \begin{aligned} & \text { (Optional) Derivatives pricing options structure created } \\ & \text { with derivset. }\end{aligned}$
Description	[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a Black-Karasinski tree.
	Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
	PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.
	PriceTree.PTree contains the clean prices.
	PriceTree.AITree contains the accrued interest.
	PriceTree.tObs contains the observation times.

BKTree
CouponRate Decimal annual rate.
Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the fixed-rate note.
Maturity $\quad$ NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.
(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default $=100$.
(Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a Black-Karasinski tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.tObs contains the observation times.

## fixedbybk

The Settle date for every fixed-rate note is set to the ValuationDate of the BK tree. The fixed-rate note argument Settle is ignored.

## Examples

Price a 5\% fixed-rate note using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the note.
load deriv;
Set the required values. Other arguments will use defaults.

```
CouponRate = 0.05;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';
```

Use fixedbybk to compute the price of the note.

```
Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)
Price =
```

103.5126

See Also
bktree, bondbybk, capbybk, cfbybk, floatbybk, floorbybk, swapbybk

Purpose
Price fixed-rate note from HJM interest-rate tree

Syntax	[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	HJMTree forward-rate tree structure created by hjmtree.
	CouponRate Decimal annual rate.
	Settle Settlement dates. Number of instruments (NINST)-by-1   vector of dates representing the settlement dates of the   fixed-rate note.
	Maturity   NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by-1 vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	$\begin{array}{ll} \text { Basis } & \begin{array}{l} \text { (Optional) Day-count basis of the instrument. A vector of } \\ \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360(P S A), \\ 5 \end{array} \\ & 7=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ & 7 \text { (Japanese). } \end{array}$
	Principal (Optional) The notional principal amount. Default $=100$.
	Options (Optional) Derivatives pricing options structure created with derivset.
Description	[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a HJM forward-rate tree.
	Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
	PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.
	PriceTree. PBush contains the clean prices.
	PriceTree.AIBush contains the accrued interest.
	PriceTree.tObs contains the observation times.

Settle Settlement dates. Number of instruments (NINST)-by-1
vector of dates representing the settlement dates of the
fixed-rate note.
NINST-by- 1 vector of dates representing the maturity
(Optional) NINST-by-1 vector representing the frequency
of payments per year. Default $=1$.
(Optional) Day-count basis of the instrument. A vector of
integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
2 = actual/360, $3=$ actual $/ 365,4=30 / 360(P S A)$,
$5=30360$ (ISDA), $6=30 / 360$ (European),
7 = actual/365 (Japanese).
Principal (Optional) The notional principal amount. Default $=100$.
Options (Optional) Derivatives pricing options structure created
with derivset.
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a HJM forward-rate tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0.
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.

## fixedbyhim

The Settle date for every fixed-rate note is set to the ValuationDate of the HJM tree. The fixed-rate note argument Settle is ignored.

## Examples

Price a 4\% fixed-rate note using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the note.
load deriv
Set the required values. Other arguments will use defaults.

```
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
```

Use fixedbyhjm to compute the price of the note.

```
Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)
Price =
```

98.7159

See Also
bondbyhjm, capbyhjm, cfbyhjm, floatbyhjm, floorbyhjm, hjmtree, swapbyhjm

Purpose
Price fixed-rate note from Hull-White interest-rate tree

Syntax	[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	HWTree Interest-rate tree structure created by hwtree.
	CouponRate Decimal annual rate.
	Settle $\quad \begin{aligned} & \text { Settlement dates. NINST-by-1 vector of dates } \\ & \text { representing the settlement dates of the fixed-rate note. }\end{aligned}$
	NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by-1 vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	$\begin{array}{ll} \text { Basis } & \begin{array}{l} \text { (Optional) Day-count basis of the instrument. A vector of } \\ \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360(P S A), \\ 5 \end{array} \\ & 7=30360(\text { ISDA }), 6=30 / 360 \text { (European), } \\ 7 \end{array}$
	$\begin{array}{ll}\text { Principal } & \begin{array}{l}\text { (Optional) NINST-by-1 vector of the notional principal } \\ \text { amount. Default }=100 .\end{array}\end{array}$
	Options (Optional) Derivatives pricing options structure created with derivset.
Description	[Price, PriceTree] = floatbybj(HWTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a Hull-White tree.
	Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
	PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.
	PriceTree. PTree contains the clean prices.
	PriceTree.AITree contains the accrued interest.
	PriceTree.tObs contains the observation times.

HWTree
CouponRate Decimal annual rate.
Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the fixed-rate note.
Maturity NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default $=100$.
(Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = floatbybj(HWTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a fixed-rate note from a Hull-White tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .
PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

## fixedbyhw

The Settle date for every fixed-rate note is set to the ValuationDate of the HW tree. The fixed-rate note argument Settle is ignored.

## Examples

Price a 5\% fixed-rate note using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the note.
load deriv;
Set the required values. Other arguments will use defaults.

```
CouponRate = 0.05;
Settle = '01-Jan-2005';
```

Maturity = '01-Jan-2006';

Use fixedbyhw to compute the price of the note.

```
Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)
Price =
```

103.5126

## See Also

bondbyhw, capbyhw, cfbyhw, floatbyhw, floorbyhw, hwtree, swapbyhw

Purpose
Price fixed-rate note from set of zero curves

Syntax	Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, Basis, Principal)
Arguments	RateSpec A structure containing the properties of an interest-rate   structure. See intenvset for information on creating   RateSpec.
	CouponRate Decimal annual rate.
	Settle $\quad \begin{aligned} & \text { Settlement date. Settle must be earlier than or equal to } \\ & \text { Maturity. }\end{aligned}$
	Maturity Maturity date.
	Reset (Optional) Frequency of payments per year. Default $=1$.
	$\begin{array}{ll} \text { Basis } & \begin{array}{l} \text { (Optional) Day-count basis of the instrument. A vector of } \\ \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360(P S A), \\ 5 \end{array} \\ & 7=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ & \end{array}$
	Principal (Optional) The notional principal amount. Default $=100$.
	All inputs are either scalars or NINST-by-1 vectors unless otherwise specified. Any date may be a serial date number or date string. An optional argument may be passed as an empty matrix [].
Description	Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, Basis, Principal) computes the price of a fixed-rate note from a set of zero curves.
	Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of fixed-rate note prices. Each column arises from one of the zero curves.
Examples	Price a 4\% fixed-rate note using a set of zero curves.
	Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the note.

load deriv

## fixedbyzero

Set the required values. Other arguments will use defaults.

```
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
```

Use fixedbyzero to compute the price of the note.

```
Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)
Price =
```

98.7159

## See Also

bondbyzero, cfbyzero, floatbyzero, swapbyzero

## Purpose

Price floating-rate note from BDT interest-rate tree

Syntax	[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options)	
Arguments	BDTTree	Interest-rate tree structure created by bdttree.
	Spread	Number of instruments (NINST)-by-1 vector of number of basis points over the reference rate.
	Settle	Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the floating-rate note.
	Maturity	NINST-by-1 vector of dates representing the maturity dates of the floating-rate note.
	Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amount. Default = 100 .
	Options	(Optional) Derivatives pricing options structure created with derivset.

Description
[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a floating-rate note from a BDT tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

## floatbybdt

PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the BDT tree. The floating-rate note argument Settle is ignored.

## Examples

Price a 20 basis point floating-rate note using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the note.
load deriv;
Set the required values. Other arguments will use defaults.

```
Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
```

Use floatbybdt to compute the price of the note.

```
Price = floatbybdt(BDTTree, Spread, Settle, Maturity)
Price =
 100.4865
```


## See Also

bdttree, bondbybdt, capbybdt, cfbybdt, fixedbybdt, floorbybdt, swapbybdt

## Purpose

Price floating-rate note from Black-Karasinski interest-rate tree

Syntax	[Price, PriceTree] = floatbybk(BKTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options)	
Arguments	BKTree	Interest-rate tree structure created by bktree.
	Spread	Number of instruments (NINST)-by-1 vector of number of basis points over the reference rate.
	Settle	Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the floating-rate note.
	Maturity	NINST-by-1 vector of dates representing the maturity dates of the floating-rate note.
	Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amount. Default $=100$.
	Options	(Optional) Derivatives pricing options structure created with derivset.

Description
[Price, PriceTree] = floatbybk(BKTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a floating-rate note from a Black-Karasinski tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

## floatbybk

PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the BK tree. The floating-rate note argument Settle is ignored.

## Examples

Price a 20 basis point floating-rate note using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the note.
load deriv;
Set the required values. Other arguments will use defaults.

```
Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';
```

Use floatbybk to compute the price of the note.

```
Price = floatbybk(BKTree, Spread, Settle, Maturity)
Price =
```

    100.3825
    See Also
bktree, bondbybk, capbybk, cfbybk, fixedbybk, floorbybk, swapbybk

Purpose
Price floating-rate note from HJM interest-rate tree

Syntax	[Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options)	
Arguments	HJMTree	forward-rate tree structure created by hjmtree.
	Spread	Number of instruments (NINST)-by-1 vector of number of basis points over the reference rate.
	Settle	Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the floating-rate note.
	Maturity	NINST-by-1 vector of dates representing the maturity dates of the floating-rate note.
	Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amount. Default = 100 .
	Options	(Optional) Derivatives pricing options structure created with derivset.

Description
[Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a floating-rate note from an HJM tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.

## floatbyhim

PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the HJM tree. The floating-rate note argument Settle is ignored.

## Examples

Price a 20 basis point floating-rate note using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the note.
load deriv
Set the required values. Other arguments will use defaults.

```
Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
```

Use floatbyhjm to compute the price of the note.

```
Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)
Price =
 100.5529
```

See Also
bondbyhjm, capbyhjm, cfbyhjm, fixedbyhjm, floorbyhjm, hjmtree, swapbyhjm

## floatbyhw

## Purpose

Price floating-rate note from Hull-White interest-rate tree

\section*{Syntax [Price, PriceTree] = floatbyhw(HWTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options) <br> Arguments <br> Description <br> | HWTree | Interest-rate tree structure created by hwtree. |
| :---: | :---: |
| Spread | Number of instruments (NINST)-by-1 vector of number of basis points over the reference rate. |
| Settle | Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the floating-rate note. |
| Maturity | NINST-by-1 vector of dates representing the maturity dates of the floating-rate note. |
| Reset | (Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$. |
| Basis | (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), <br> $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, <br> $5=30360$ (ISDA), $6=30 / 360$ (European), <br> 7 = actual/365 (Japanese). |
| Principal | (Optional) NINST-by-1 vector of the notional principal amount. Default $=100$. |
| Options | (Optional) Derivatives pricing options structure created with derivset. | <br> [Price, PriceTree] = floatbyhw(HWTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a floating-rate note from a Hull-White tree. <br> Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0. <br> PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.}

PriceTree.PTree contains the clean prices.

## floatbyhw

PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.

## Examples

Price a 20 basis point floating-rate note using a Hull-White interest-rate tree.
Load the file deriv. mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the note.

```
load deriv
```

Set the required values. Other arguments will use defaults.

```
Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';
```

Use floatbyhw to compute the price of the note.

```
Price = floatbyhw(HWTree, Spread, Settle, Maturity)
Price =
 100.3825
```


## See Also

bondbyhw, capbyhw, cfbyhw, fixedbyhw, floorbyhw, hwtree, swapbyhw

## Purpose

Price floating-rate note from set of zero curves

See Also	Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset, Basis, Principal)
Arguments	RateSpec A structure containing the properties of an interest-rate   structure. See intenvset for information on creating   RateSpec.
	Spread Number of basis points over the reference rate.
	Settle   Settlement date. Settle must be earlier than or equal to Maturity.
	Maturity Maturity date.
	Reset (Optional) Frequency of payments per year. Default = 1 .
	$\begin{array}{ll} \text { Basis } & \text { (Optional) Day-count basis of the instrument. A vector of } \\ \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ 2=\text { actual } / 360,3=\text { actual/365, } 4=30 / 360(\text { PSA }), \\ 5 & 530360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ 7=\text { actual/365 (Japanese). } \end{array}$
	Principal (Optional) The notional principal amount. Default $=100$.
	All inputs are either scalars or NINST-by-1 vectors unless otherwise specified. Any date may be a serial date number or date string. An optional argument may be passed as an empty matrix [].
Description	Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset, Basis, Principal) computes the price of a floating-rate note from a set of zero curves.
	Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of floating-rate note prices. Each column arises from one of the zero curves.

## floatbyzero

## Examples

Price a 20 basis point floating-rate note using a set of zero curves.
Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the note.
load deriv
Set the required values. Other arguments will use defaults.

```
Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
```

Use floatbyzero to compute the price of the note.

```
Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)
Price =
 100.5529
```

See Also
bondbyzero, cfbyzero, fixedbyzero, swapbyzero

## floorbybdt

Purpose	Price floor instrument from BDT interest-rate tree
Syntax	[Price, PriceTree] = floorbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	BDTTree Interest-rate tree structure created by bdttree.
	Strike Number of instruments (NINST)-by-1 vector of rates at which the floor is exercised.
	Settle Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the BDT tree. The floor argument Settle is ignored.
	Maturity   NINST-by-1 vector of dates representing the maturity dates of the floor.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by- } 1 \text { vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	$\begin{array}{ll} \text { Basis } & \begin{array}{l} \text { (Optional) Day-count basis of the instrument. A vector of } \\ \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360(P S A), \\ 5 \end{array} \\ & 7=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ 7 \end{array}$
	Principal (Optional) The notional principal amount. Default $=100$.
	Options $\quad \begin{aligned} & \text { (Optional) Derivatives pricing options structure created } \\ & \text { with derivset. }\end{aligned}$
Description	[Price, PriceTree] = floorbybdt(BDTTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from a BDT interest-rate tree.
	Price is an NINST-by-1 vector of the expected prices of the floor at time 0 .
	PriceTree is the tree structure with values of the floor at each node.

## floorbybdt

## Examples

Example 1. Price a $10 \%$ floor instrument using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and interest-rate information needed to price the floor instrument.

```
load deriv;
```

Set the required values. Other arguments will use defaults.

```
Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
```

Use floorbybdt to compute the price of the floor instrument.

```
Price = floorbybdt(BDTTree, Strike, Settle, Maturity)
Price =
 0.1770
```

Example 2. Here is a second example, showing the pricing of a $10 \%$ floor instrument using a newly created BDT tree.

First set the required arguments for the three needed specifications.

```
Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
```

Next create the specifications.
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.

```
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
```

Set the floor arguments. Remaining arguments will use defaults.

```
FloorStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
FloorReset = 1;
```

Finally, use floorbybdt to find the price of the floor instrument.
Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,... FloorReset)

Price =

$$
0.0431
$$

## floorbybk

Purpose
Price floor instrument from Black-Karasinski interest-rate tree
Syntax

Arguments

HWTree	Interest-rate tree structure created by bktree.
Strike	Number of instruments (NINST)-by-1 vector of rates at which the floor is exercised.
Settle	Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the BK tree. The floor argument Settle is ignored.
Maturity	NINST-by-1 vector of dates representing the maturity dates of the floor.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360$, $3=$ actual $/ 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
Principal	(Optional) The notional principal amount. Default $=100$.
Options	(Optional) Derivatives pricing options structure created with derivset.

Description [Price, PriceTree] = floorbybk(BKTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from a Black-Karasinski tree.

Price is an NINST-by-1 vector of the expected prices of the floor at time 0.
PriceTree is the tree structure with values of the floor at each node.

## floorbybk

## Examples

Price a 3\% floor instrument using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest rate information needed to price the floor instrument.
load deriv;
Set the required values. Other arguments will use defaults.

```
Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';
```

Use floorbyhw to compute the price of the floor instrument.

```
Price = floorbybk(BKTree, Strike, Settle, Maturity)
Price =
 0.2061
```

See Also bktree, capbybk, cfbybk, swapbybk

## floorbyhim

Purpose	Price floor instrument from HJM interest-rate tree
Syntax	[Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	HJMTree forward-rate tree structure created by hjmtree.
	Strike Number of instruments (NINST)-by-1 vector of rates at which the floor is exercised.
	Settle Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the HJM tree. The floor argument Settle is ignored.
	Maturity   NINST-by-1 vector of dates representing the maturity dates of the floor.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by-1 vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	Principal (Optional) The notional principal amount. Default $=100$.
	$\begin{array}{ll}\text { Options } & \begin{array}{l}\text { (Optional) Derivatives pricing options structure created } \\ \text { with derivset. }\end{array}\end{array}$
Description	[Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from an HJM tree.
	Price is an NINST-by-1 vector of the expected prices of the floor at time 0.
	PriceTree is the tree structure with values of the floor at each node.

## Examples

See Also

Price a $3 \%$ floor instrument using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the floor instrument.
load deriv;
Set the required values. Other arguments will use defaults.

```
Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
```

Use floorbyhjm to compute the price of the floor instrument.
Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)
Price =
0.0486
capbyhjm, cfbyhjm, hjmtree, swapbyhjm

## floorbyhw

Purpose	Price floor instrument from Hull-White interest-rate tree
Syntax	[Price, PriceTree] = floorbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)
Arguments	HWTree Interest-rate tree structure created by hwtree.
	Strike Number of instruments (NINST)-by-1 vector of rates at which the floor is exercised.
	Settle Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the HW tree. The floor argument Settle is ignored.
	Maturity   NINST-by-1 vector of dates representing the maturity dates of the floor.
	$\begin{array}{ll} \text { Reset } & \begin{array}{l} \text { (Optional) NINST-by-1 vector representing the frequency } \\ \text { of payments per year. Default }=1 . \end{array} \end{array}$
	$\text { Basis } \quad \begin{aligned} & \text { (Optional) Day-count basis of the instrument. A vector of } \\ & \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ & 2=\text { actual } / 360,3=\text { actual } / 365,4=30 / 360 \text { (PSA), } \\ & 5=30360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ & 7=\text { actual/365 (Japanese). } \end{aligned}$
	Principal (Optional) The notional principal amount. Default $=100$.
	Options $\quad$(Optional) Derivatives pricing options structure created   with derivset.
Description	[Price, PriceTree] = floorbyhw(HWTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from an HW tree.
	Price is an NINST-by-1 vector of the expected prices of the floor at time 0.
	PriceTree is the tree structure with values of the floor at each node.

## Examples

Price a $3 \%$ floor instrument using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest rate information needed to price the floor instrument.
load deriv;
Set the required values. Other arguments will use defaults.

```
Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';
```

Use floorbyhw to compute the price of the floor instrument.

```
Price = floorbyhw(HWTree, Strike, Settle, Maturity)
Price =
 0.4616
```

See Also capbyhw, cfbyhw, hwtree, swapbyhw

Purpose

Syntax $\quad$| [PortSens, PortCost, PortHolds] $=$ hedgeopt(Sensitivities, Price, |
| :--- |
| CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, |
| ConSet) |

Arguments Sensitivities Number of instruments (NINST) by number of sensitivities (NSENS) matrix of dollar sensitivities of each instrument. Each row represents a different instrument. Each column represents a different sensitivity.

Price NINST-by-1 vector of portfolio instrument unit prices.
CurrentHolds NINST-by-1 vector of contracts allocated to each instrument.

FixedInd (Optional) Number of fixed instruments (NFIXED)-by-1 vector of indices of instruments to hold fixed. For example, to hold the first and third instruments of a 10 instrument portfolio unchanged, set FixedInd = [llll. Default = [ ], no instruments held fixed.
NumCosts (Optional) Number of points generated along the cost frontier when a vector of target costs (TargetCost) is not specified. The default is 10 equally spaced points between the point of minimum cost and the point of minimum exposure. When specifying TargetCost, enter NumCosts as an empty matrix [].
TargetCost (Optional) Vector of target cost values along the cost frontier. If TargetCost is empty, or not entered, hedgeopt evaluates NumCosts equally spaced target costs between the minimum cost and minimum exposure. When specified, the elements of TargetCost should be positive numbers that represent the maximum amount of money the owner is willing to spend to rebalance the portfolio.

## hedgeopt

TargetSens	(Optional) 1-by-NSENS vector containing the target sensitivity values of the portfolio. When specifying TargetSens, enter NumCosts and TargetCost as empty matrices [].
ConSet	(Optional) Number of constraints (NCONS) by number of instruments (NINST) matrix of additional conditions on the portfolio reallocations. An eligible NINST-by-1 vector of contract holdings, PortWts, satisfies all the inequalities A*PortWts <= b, where   A $=$ ConSet(:, $1:$ end-1) and $b=C o n S e t(:, e n d)$.

Notes 1. The user-specified constraints included in ConSet may be created with the functions pcalims or portcons. However, the portcons default PortHolds positivity constraints are typically inappropriate for hedging problems since short-selling is usually required.
2. NPOINTS, the number of rows in PortSens and PortHolds and the length of PortCost, is inferred from the inputs. When the target sensitivities, TargetSens, is entered, NPOINTS = 1; otherwise NPOINTS = NumCosts, or is equal to the length of the TargetCost vector.
3. Not all problems are solvable (e.g., the solution space may be infeasible or unbounded, or the solution may fail to converge). When a valid solution is not found, the corresponding rows of PortSens and PortHolds and the elements of PortCost are padded with NaNs as placeholders.

## Description

[PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet) allocates an optimal hedge by one of two criteria:

- Minimize portfolio sensitivities (exposure) for a given set of target costs
- Minimize the cost of hedging a portfolio given a set of target sensitivities

Hedging involves the fundamental tradeoff between portfolio insurance and the cost of insurance coverage. This function allows investors to modify portfolio allocations among instruments to achieve either of the criteria. The

## hedgeopt

chosen criterion is inferred from the input argument list. The problem is cast as a constrained linear least squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of portfolio sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the best hedge possible is chosen.

PortCost is a 1-by-NPOINTS vector of total portfolio costs.
PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each instrument. These are the reallocated portfolios.

## See Also <br> hedgeslf <br> pcalims, portcons, portopt in the Financial Toolbox documentation

lsqlin in the Optimization Toolbox documentation

## hedgeslf

## Purpose

Syntax

Arguments

Description

Self-financing hedge

```
[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, CurrentHolds, FixedInd, ConSet)
```

Sensitivities Number of instruments (NINST) by number of sensitivities (NSENS) matrix of dollar sensitivities of each instrument. Each row represents a different instrument. Each column represents a different sensitivity.

Price NINST-by-1 vector of instrument unit prices.
CurrentHolds NINST-by-1 vector of contracts allocated in each instrument.

FixedInd (Optional) Empty or number of fixed instruments (NFIXED)-by-1 vector of indices of instruments to hold fixed. The default is FixedInd $=1$; the holdings in the first instrument are held fixed. If NFIXED instruments will not be changed, enter all their locations in the portfolio in a vector. If no instruments are to be held fixed, enter FixedInd = [].

ConSet (Optional) Number of constraints (NCONS)-by-NINST matrix of additional conditions on the portfolio reallocations. An eligible NINST-by-1 vector of contract holdings, PortHolds, satisfies all the inequalities A*PortHolds <= b, where A = ConSet(:, 1:end-1) and b = ConSet(:,end).
[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, CurrentHolds, FixedInd, ConSet) allocates a self-financing hedge among a collection of instruments. hedgeslf finds the reallocation in a portfolio of financial instruments that hedges the portfolio against market moves and that is closest to being self-financing (maintaining constant portfolio value). By default the first instrument entered is hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the best possible hedge is chosen.

PortValue is the total portfolio value (scalar). When a perfectly self-financing hedge exists, PortValue is equal to dot (Price, CurrentWts) of the initial portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each instrument. This is the reallocated portfolio.

Notes 1. The constraints PortHolds(FixedInd) = CurrentHolds(FixedInd) are appended to any constraints passed in ConSet. Pass FixedInd = [] to specify all constraints through ConSet.
2. The default constraints generated by portcons are inappropriate, since they require the sum of all holdings to be positive and equal to one.
3. hedgeself first tries to find the allocations of the portfolio that make it closest to being self-financing, while reducing the sensitivities to 0 . If no solution is found, it finds the allocations that minimize the sensitivities. If the resulting portfolio is self-financing, PortValue is equal to the value of the original portfolio.

## Examples Example 1. Perfect sensitivity cannot be reached.

```
Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, WO)
PortSens =
 0.0000
 0.3200
PortValue =
 0.7600
```

```
PortHolds =
 1.0000
-0.4400
```

Example 2. Constraints are in conflict.

```
Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
ConSet = pcalims([2 2])
% O.K. if nothing fixed.
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, WO,...
[], ConSet)
PortSens =
 2.8800
 0.6400
PortValue =
 4.4000
PortHolds =
 2
 2
% WO(1) is not greater than 2.
[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...
1, ConSet)
??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and
by fixing the weight of instruments(s): 1
```


## hedgeslf

Example 3. Constraints are impossible to meet.

```
Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
ConSet = pcalims([2 2],[[1 1]);
[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...
[],ConSet)
??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet
```


## See Also

hedgeopt
lsqlin in the Optimization Toolbox documentation
portcons in the Financial Toolbox documentation

## Purpose

Arguments

Description

Syntax [Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)
Instrument prices from HJM interest-rate tree

HJMTree	Heath-Jarrow-Morton tree sampling a forward-rate   process. See hjmtree for information on creating   HJMTree.
InstSet	Variable containing a collection of instruments.   Instruments are categorized by type. Each type can have   different data fields. The stored data field is a row vector   or string for each instrument.
Options	(Optional) Derivatives pricing options structure created   with derivset.

Price $=$ hjmprice(HJMTree, InstSet, Options) computes arbitrage free prices for instruments using an interest-rate tree created with hjmtree. A subset of NINST instruments from a financial instrument variable, InstSet, are priced.

Price is a NINST-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.
PriceTree. PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are

- bondbyhjm: Price a bond from an HJM tree.
- capbyhjm: Price a cap from an HJM tree.
- cfbyhjm: Price an arbitrary set of cash flows from an HJM tree.
- fixedbyhjm: Price a fixed-rate note from an HJM tree.
- floatbyhjm: Price a floating-rate note from an HJM tree.
- floorbyhjm: Price a floor from an HJM tree.
- optbndbyhjm: Price a bond option from an HJM tree.
- swapbyhjm: Price a swap from an HJM tree.


## Examples

Load the HJM tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', \{'Bond', 'Cap'\});
instdisp(HJMSubSet)

Index	Type	CouponRate Settle	Maturity	Period	Name ...	
1	Bond	0.04	$01-J a n-2000$	$01-J a n-2003$	1	$4 \%$ bond
2	Bond	0.04	$01-J a n-2000$	$01-$ Jan-2004	2	$4 \%$ bond

Index Type Strike Settle Maturity CapReset... Name ... 3 Cap 0.03 01-Jan-2000 01-Jan-2004 $1 \quad 3 \%$ Cap [Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
98.7159
97.5280
6.2831

PriceTree =
FinObj: 'HJMPriceTree'
PBush: \{1x5 cell\}
AIBush: \{1x5 cell\}
tObs: [0 $\left.1 \begin{array}{llll}1 & 2 & 4\end{array}\right]$

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, HJMSubSet)


First 4\% Bond (Maturity 2003)


Second 4\% Bond (Maturity 2004)


3\% Cap
See Also
hjmsens, hjmtree, hjmvolspec, instadd, intenvprice, intenvsens

Purpose
Instrument prices and sensitivities from HJM interest-rate tree

Syntax<br>[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)

Arguments

Description

HJMTree	Heath-Jarrow-Morton tree sampling a forward-rate   process. See hjmtree for information on creating   HJMTree.
InstSet	Variable containing a collection of instruments.   Instruments are categorized by type. Each type can have   different data fields. The stored data field is a row vector   or string for each instrument.
Options	(Optional) Derivatives pricing options structure created   with derivset.

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with hjmtree. NINST instruments from a financial instrument variable, InstSet, are priced. hjmsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to hjmtree. See hjmtree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to hjmtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility $\sigma(t, T)$. Vega is computed by finite differences in calls to hjmtree. See hjmvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

## himsens

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a $1 \%$ shift in the volatility process.

## Examples

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.

```
 load deriv.mat;
 HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});
 instdisp(HJMSubSet)
\begin{tabular}{lllllll}
Index & Type & CouponRate Settle & Maturity & Period & Name ... \\
1 & Bond & 0.04 & \(01-J a n-2000\) & \(01-\) Jan-2003 & 1 & \(4 \%\) bond \\
2 & Bond & 0.04 & \(01-J a n-2000\) & \(01-J a n-2004\) & 2 & \(4 \%\) bond
\end{tabular}
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 3% Cap
 [Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)
 Warning: Not all cash flows are aligned with the tree. Result will
 be approximated.
 Delta =
```

        -272.6462
        -347.4315
        294.9700
    
## Gamma =

$1.0 \mathrm{e}+003$ *
1.0299
1.6227
6.8526

## See Also

hjmprice, hjmtree, hjmvolspec, instadd

## Purpose

## Syntax

## Arguments

Compounding

Specify time structure for HJM interest-rate tree
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

ValuationDate Scalar date marking the pricing date and first observation in the tree. Specify as serial date number or date string.

Maturity $\quad$ Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order.
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default $=1$. This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the compounding frequency, $Z$ is the zero rate, and $T$ is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number of days in the basis year and $T$ is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp (-T * Z)$, where $T$ is time in years.

Description TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for an HJM tree and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for hjmtree. The state observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

## Examples

Specify an eight-period tree with semiannual nodes (every six months). Use exponential compounding to report rates.

```
Compounding = -1;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
 FinObj: 'HJMTimeSpec'
 ValuationDate: 730135
 Maturity: [8x1 double]
 Compounding: -1
 Basis: 0
 EndMonthRule: 1
```


## See Also

hjmtree, hjmvolspec

Purpose

## Syntax

Arguments

## Description

## Examples

Construct HJM interest-rate tree

HJMTree $=$ hjmtree(VolSpec, RateSpec, TimeSpec)

VolSpec	Volatility process specification. Sets the number of   factors and the rules for computing the volatility   $\sigma(t, T)$ for each factor. See hjmvolspec for information   on the volatility process.
RateSpec	Interest-rate specification for the initial rate curve. See   intenvset for information on declaring an interest-rate   variable.
TimeSpec	Tree time layout specification. Defines the observation   dates of the HJM tree and the compounding rule for date   to time mapping and price-yield formulas. See   hjmtimespec for information on the tree structure.

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and forward-rate information on a bushy tree.

Using the data provided, create an HJM volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create an HJM tree using hjmtree.

```
```

Compounding = 1;

```
```

Compounding = 1;
ValuationDate = '01-01-2000';
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm = [1; 2; 3; 4; 5];
CurveTerm = [1; 2; 3; 4; 5];
HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

```
```

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

```
```

```
RateSpec = intenvset('Compounding', Compounding,...
 'ValuationDate', ValuationDate,...
 'StartDates', StartDate,...
 'EndDates', EndDates,...
 'Rates', Rates);
```

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding); HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec);

Use treeviewer to observe the tree you have created.

```
treeviewer(HJMTree)
```



See Also
hjmprice, hjmtimespec, hjmvolspec, intenvset

## Purpose

Syntax
Arguments

Specify HJM interest-rate volatility process

```
Volspec = hjmvolspec(varargin)
```

The arguments to hjmvolspec vary according to the type and number of volatility factors specified when calling the function. Factors are specified by pairs of names and parameter sets. Factor names can be 'Constant ', 'Stationary', 'Exponential', 'Vasicek', or 'Proportional'. The parameter set is specific for each of these factor types:

- Constant volatility (Ho-Lee): VolSpec = hjmvolspec('Constant', Sigma_0)
- Stationary volatility: VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)
- Exponential volatility: VolSpec = hjmvolspec('Exponential', Sigma_0, Lambda)
- Vasicek, Hull-White:

VolSpec = hjmvolspec('Vasicek', Sigma_0, CurveDecay, CurveTerm)

- Nearly proportional stationary:

VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, MaxSpot)

You can specify more than one factor by concatenating names and parameter sets.

The table below defines the various arguments to hjmvolspec.

Argument	Description
Sigma_0	Scalar base volatility over a unit time.
Lambda	Scalar decay factor.
CurveVol	Number of curves (NCURVES) -by-1 vector of Vol values at   sample points.
CurveDecay	NCURVES-by-1 vector of Decay values at sample points.
CurveProp	NCURVES-by-1 vector of Prop values at sample points.

## Argument Description

CurveTerm NCURVES-by-1 vector of Term sample points.
Note: See the volatility specifications formulas below for a description of Vol, Decay, Prop, and Term.

## Description

Volspec $=$ hjmvolspec (varargin) computes VolSpec, a structure that specifies the volatility model for hjmtree.
hjmvolspec specifies a HJM forward-rate volatility process. Each factor is specified with one of the functional forms:

Volatility Specification Formula

Constant	$\sigma(t, T)=$ Sigma_0
Stationary	$\sigma(t, T)=\operatorname{Vol}(\mathrm{T}-\mathrm{t})=\operatorname{Vol}(\mathrm{Term})$
Exponential	$\sigma(t, T)=$ Sigma_0*exp (-Lambda* (T-t) )
Vasicek, Hull-White	$\sigma(t, T)=$ Sigma_0*exp (-Decay (T-t) )
Proportional	$\sigma(t, T)=\operatorname{Prop}(\mathrm{T}-\mathrm{t}) * \max ($ SpotRate (t), MaxSpot)

The volatility process is $\sigma(t, T)$, where $t$ is the observation time and $T$ is the starting time of a forward rate. In a stationary process the volatility term is $T-t$. Multiple factors can be specified sequentially.

The time values $T, t$, and Term are in coupon interval units specified by the Compounding input of hjmtimespec. For instance if Compounding $=2$, Term $=1$ is a semiannual period (six months).

## Examples

Example 1. Volatility is single-factor proportional.

```
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)
VolSpec =
 FinObj: 'HJMVolSpec'
 FactorModels: {'Proportional'}
 FactorArgs: {{1x3 cell}}
 SigmaShift: 0
 NumFactors: 1
 NumBranch: 2
 PBranch: [0.5000 0.5000]
 Fact2Branch: [-1 1]
```

Example 2. Volatility is two-factor exponential and constant.

```
VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)
VolSpec =
 FinObj: 'HJMVolSpec'
 FactorModels: {'Exponential' 'Constant'}
 FactorArgs: {{1x2 cell} {1x1 cell}}
 SigmaShift: 0
 NumFactors: 2
 NumBranch: 3
 PBranch: [0.2500 0.2500 0.5000]
 Fact2Branch: [2x3 double]
```

See Also
hjmtimespec, hjmtree

Purpose Instrument prices from Hull-White interest-rate tree
Syntax [Price, PriceTree] = hwprice(HWTree, InstSet, Options)
Arguments
HWTree
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.

## Description

[Price, PriceTree] = hwprice(HWTree, InstSet, Options) computes arbitrage free prices for instruments using an interest-rate tree created with hwtree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
hwprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are

- bondbyhw: Price a bond from a Hull-White tree.
- capbyhw: Price a cap from a Hull-White tree.
- cfbyhw: Price an arbitrary set of cash flows from a Hull-White tree.
- fixedbyhw: Price a fixed-rate note from a Hull-White tree.
- floatbyhw: Price a floating-rate note from a Hull-White tree.
- floorbyhw: Price a floor from a Hull-White tree.
- optbndbyhw: Price a bond option from a Hull-White tree.
- swapbyhw: Price a swap from a Hull-White tree.


## Examples

Load the HW tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.

```
 load deriv.mat;
 HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});
 instdisp(HWSubSet)
```

| Index | Type | CouponRate Settle | Maturity | Period | Name ... |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Bond | 0.04 | $01-J a n-2004$ | $01-$ Jan-2007 | 1 | $4 \%$ bond |
| 2 | Bond | 0.04 | $01-J a n-2004$ | $01-$ Jan-2008 | 1 | $4 \%$ bond |


Index	Type Strike Settle	Maturity	CapReset...	Name ...	
3	Cap	0.06	$01-J a n-2004$	$01-J a n-2008$	1

    [Price, PriceTree] = hwprice(HWTree, HWSubSet);
    Price =
        100.9188
            99.3296
            0.5837
    You can use treeviewer to see the prices of these three instruments along the price tree.

## hwprice

```
treeviewer(PriceTree, HWSubSet)
```



First 4\% Bond (Maturity 2007)


Second 4\% Bond (Maturity 2008)


6\% Cap

See Also hwsens, hwtree, instadd, intenvprice, intenvsens

Purpose

## Syntax

Arguments

## Description

Instrument prices and sensitivities from HW interest-rate tree

```
[Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet, Options)
```

HWTree Interest-rate tree structure created by hwtree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the hwtree function. NINST instruments from a financial instrument variable, InstSet, are priced. hwsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap '. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to hwtree. See hwtree for information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to hwtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility $\sigma(t, T)$. Vega is computed by finite differences in calls to hwtree. See hwvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a $1 \%$ shift in the volatility process.

## Examples

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.

```
 load deriv.mat;
 HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});
 instdisp(HWSubSet)
```

Index	Type CouponRate Settle	Maturity	Period	Name ...	
1	Bond 0.04	$01-J a n-2004$	$01-$ Jan-2007	1	$4 \%$
2	Bond	0.04	$01-J a n-2004$	$01-J a n-2008$	1

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.06 01-Jan-2004 01-Jan-2008 1 6\% Cap
[Delta, Gamma] = hwsens(HWTree, HWSubSet)
Delta =
-291. 26
-374.64
59.55
Gamma =
858.41
1460.88
4843.65

See Also
hwprice, hwtree, hwvolspec, instadd

## hwtimespec

## Purpose

## Syntax

## Arguments

Compounding

Specify time structure for a Hull-White tree
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)

ValuationDate Scalar date marking the pricing date and first observation in the tree. Specify as a serial date number or date string

Maturity $\quad$ Number of levels (depth) of the tree. A number of levels (NLEVELS)-by-1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order.
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default =-1 (continuous compounding). This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the compounding frequency, $Z$ is the zero rate, and $T$ is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number of days in the basis year and $T$ is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp (-T * Z)$, where $T$ is time in years.

Description TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a Hull-White tree and determines the mapping between dates and time for rate quoting.
TimeSpec is a structure specifying the time layout for hwtree. The state observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

## hwtimespec

## Examples

Specify a four period tree with annual nodes. Use annual compounding to report rates.

```
ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'HWTimeSpec'
ValuationDate: 731947
Maturity: [4x1 double]
 Compounding: 1
Basis: 0
```

See Also bktree, hwtree, hwvolspec

Purpose
Syntax HWTree $=$ hwtree (VolSpec, RateSpec, TimeSpec)
Construct Hull-White interest-rate tree

Description

## Examples

VolSpec	Volatility process specification. See hwvolspec for   information on the volatility process.
RateSpec	Interest-rate specification for the initial rate curve. See   intenvset for information on declaring an interest-rate   variable.
TimeSpec	Tree time layout specification. Defines the observation   dates of the HW tree and the compounding rule for date   to time mapping and price-yield formulas. See   hwtimespec for information on the tree structure.

HWTree = hwtree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

Using the data provided, create a Hull-White volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a Hull-White tree using hwtree.

```
Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
```

```
RateSpec = intenvset('Compounding', Compounding,...
 'ValuationDate', ValuationDate,...
 'StartDates', ValuationDate,...
 'EndDates', VolDates,...
 'Rates', Rates);
HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWTree =
 FinObj: 'HWFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
 tObs: [0 0.9973 1.9973 2.9973]
 dObs: [731947 732312 732677 733042]
 CFlowT: {[4x1 double] [3\times1 double] [2x1 double] [3.9973]}
 Probs: {[3\times1 double] [3\times3 double] [3x5 double]}
 Connect: {[2] [2 3 4] [2 2 3 4 4]}
 FwdTree: {1x4 cell}
```

Use treeviewer to observe the tree you have created.

```
treeviewer(HWTree)
```



See Also hwprice, hwtimespec, hwvolspec, intenvset

## Purpose

## Syntax

Arguments

Description

Examples

Specify Hull-White interest-rate volatility process
Volspec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod)

ValuationDate	Scalar value representing the observation date of the   investment horizon.
VolDates	Number of points (NPOINTS) -by-1 vector of yield   volatility end dates.
VolCurve	NPOINTS-by-1 vector of yield volatility values in decimal   form.
AlphaDates	NPOINTS-by-1 vector of mean reversion end dates.
AlphaCurve	NPOINTS-by-1 vector of positive mean reversion values in   decimal form.
InterpMethod	(Optional) Interpolation method. Default is 'linear '.   See interp1 for more information.

Volspec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod) creates a structure specifying the volatility for hwtree.

Using the data provided, create a Hull-White volatility specification (VolSpec).

```
ValuationDate = '01-01-2004';
```

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
'12-31-2007'];
VolCurve = 0.01;
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)

```
AlphaDates, AlphaCurve)
```

HWVolSpec =

FinObj: 'HWVolSpec'<br>ValuationDate: 731947<br>VolDates: [4x1 double]<br>VolCurve: [4x1 double]<br>AlphaCurve: 0.1000<br>AlphaDates: 733408<br>VolInterpMethod: 'linear'

## See Also <br> bktree, interp1

## Purpose

Syntax Arbitrary cash flow instrument. (See also instcf.)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)

Asian instrument. (See also instasian.)
InstSet = instasian('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Barrier instrument. (See also instbarrier.)
InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate)

Bond instrument. (See also instbond.)
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Bond option. (See also instoptbnd.)
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

Cap instrument. (See also instcap.)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis, Principal)

Compound instrument. (See also instcompound.)
InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt,COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

Fixed-rate note instrument. (See also instfixed.)
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset, Basis, Principal) )

Floating-rate note instrument. (See also instfloat.)
InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis, Principal )

Floor instrument. (See also instfloor.)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis, Principal)

Lookback instrument. (See also instlookback.)
InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

## Stock option instrument. (See also instoptstock.)

InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

Swap instrument. (See also instswap.)
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

## To add instruments to an existing collection:

InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...)

Arguments

Description

InstSet0ld Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.

For more information on instrument data parameters, see the reference entries for individual instrument types. For example, see instcap for additional information on the cap instrument.
instadd stores instruments of types 'Asian', 'Barrier', 'Bond', 'Cap', 'CashFlow', 'Compound', 'Fixed', 'Float', 'Floor', 'Lookback', 'OptBond', 'OptStock', or 'Swap'. This toolbox provides pricing and sensitivity routines for these instruments.

InstSet is an instrument set variable containing the new input data.

## Examples

## See Also

Create a portfolio with two cap instruments and a $4 \%$ bond.

```
 Strike = [0.06; 0.07];
 CouponRate = 0.04;
 Settle = '06-Feb-2000';
 Maturity = '15-Jan-2003';
 InstSet = instadd('Cap', Strike, Settle, Maturity);
 InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);
instdisp(InstSet)
Index Type Strike Settle Maturity CapReset Basis Principal
1 Cap 0.06 06-Feb-2000 15-Jan-2003 NaN NaN NaN
2 Cap 0.07 06-Feb-2000 15-Jan-2003 NaN NaN NaN
Index Type CouponRate Settle Maturity ...
3 Bond 0.04 06-Feb-2000 15-Jan-2003...
instasian, instbarrier, instbond, instcap, instcf, instcompound, instfixed, instfloat, instfloor, instlookback, instoptbnd, instoptstock, instswap
```


## Purpose

Add new instruments to an instrument collection

## Syntax

Arguments

FieldList	String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field. FieldList cannot be named with the reserved name Type or Index
DataList	Number of instruments (NINST)-by-M array or NFIELDS-by- 1 cell array of data contents for each field. Each row in a data array corresponds to a separate instrument. Single rows are copied to apply to all instruments to be worked on. The number of columns is arbitrary, and data is padded along columns.
ClassList	(Optional) String or NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how DataList is parsed. Valid strings are 'dble', 'date', and 'char'. The 'FieldClass', ClassList pair is always optional. ClassList is inferred from existing fieldnames or from the data if not entered.
TypeString	String specifying the type of instrument added. Instruments of different types can have different fieldname collections.
InstSet	Variable containing a collection of instruments.   Instruments are classified by type; each type can have different data fields. The stored data field is a row vector

## Description

Examples

Use instaddfield to create your own types of instruments or to append new instruments to an existing collection. Argument value pairs can be entered in any order.

```
InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,
 'Type', TypeString) and
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',
ClassList, 'Data', DataList, 'Type', TypeString) create an instrument variable.
InstSetNew = instaddfield(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Type , TypeString) adds instruments to an existing instrument set, InstSet. The output InstSetNew is a new instrument set containing the input data.
```

Build a portfolio around July options.

Strike	Call	Put
95	12.2	2.9
100	9.2	4.9
105	6.8	7.4

```
Strike = (95:5:105)'
CallP = [12.2; 9.2; 6.8]
```

Enter three call options with data fields Strike, Price, and Opt.

```
InstSet = instaddfield('Type','Option','FieldName',...
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'});
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
```

Add a futures contract and set the input parsing class.

```
InstSet = instaddfield(InstSet,'Type','Futures',...
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},...
'Data' ,{'01-Jul-99',104.4 });
instdisp(InstSet)
```

Index	Type	Strike	Price	Opt
1	Option	95	12.2	Call
2	Option 100	9.2	Call	
3	Option 105	6.8	Call	

```
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
```

Add a put option.

```
FN = instfields(InstSet,'Type','Option')
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'});
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
```

Make a placeholder for another put.

```
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put')
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
```

Index	Type	Strike	Price	Opt
5	Option 105	7.4	Put	
6	Option	NaN	NaN	Put

Add a cash instrument.

```
InstSet = instaddfield(InstSet, 'Type', 'TBill',...
'FieldName','Price','Data',99)
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put
Index Type Price
7 TBill 99
instdisp, instget, instgetcell, instsetfield
```

See Also

Purpose

## Syntax

Arguments

Construct Asian option

```
InstSet = instasian(InstSet, OptSpec, Strike, Settle, ExerciseDates,
 AmericanOpt, AvgType, AvgPrice, AvgDate)
[FieldList, ClassList, TypeString] = instasian
```

InstSet	Variable containing a collection of instruments.   Instruments are classified by type; each type can have   different data fields. The stored data field is a row vector   or string for each instrument.
OptSpec	NINST-by-1 list of string values 'Call' or 'Put '.
Strike	NINST-by-1 vector of strike price values. Each row is the   schedule for one option.
Settle	NINST-by-1 vector of Settle dates.

ExerciseDates For a European option (AmericanOpt = 0):
NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (AmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt $=0, N a N$, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.

AvgType (Optional) String = 'arithmetic ' for arithmetic average (default) or 'geometric' for geometric average.

AvgPrice \begin{tabular}{l}

(Optional) Scalar representing the average price of the
underlying asset at Settle. This argument is used when
AvgDate < Settle. Default is the current stock price.

(Optional) Scalar representing the date on which the <br>
averaging period begins. Default = Settle.
\end{tabular}

AvgDate | Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified |
| :--- |
| entries in vectors with NaN. Only one data argument is required to create the |
| instrument. The others may be omitted or passed as empty matrices [ ]. |

InstSet = instasian(InstSet, OptSpec, Strike, Settle, ExerciseDates,
AmericanOpt, AvgType, AvgPrice, AvgDate) specifies an Asian option.

[FieldList, ClassList, TypeString] = instasian displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.
ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.
TypeString is a string specifying the type of instrument added. For an Asian
option instrument, TypeString = 'Asian '.

## See Also

instadd, instdisp, instget

## Purpose

## Syntax

## Arguments

Construct barrier option

```
InstSet = instbarrier(InstSet, OptSpec, Strike, Settle,
 ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate)
[FieldList, ClassList, TypeString] = instbarrier
```

InstSet	Variable containing a collection of instruments.   Instruments are classified by type; each type can have   different data fields. The stored data field is a row vector   or string for each instrument.
OptSpec	NINST-by-1 list of string values 'Call' or 'Put '.
Strike	NINST-by-1 vector of strike price values. Each row is the   schedule for one option.
Settle	NINST-by-1 vector of Settle dates.

ExerciseDates For a European option (AmericanOpt = 0):
NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (AmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.

## instbarrier

BarrierSpec	List of string values:
	'UI ': Up Knock In
	'UO' : Up Knock Out
	'DI ': Down Knock In
	'DO' : Down Knock Out
Barrier	Vector of barrier values.
Rebate	(Optional) Vector of rebate values.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

See Also

InstSet = instbarrier(InstSet, OptSpec, Strike, Settle, ExerciseDates, American0pt, BarrierSpec, Barrier, Rebate) specifies a barrier option.
[FieldList, ClassList, TypeString] = instbarrier displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a barrier option instrument, TypeString = 'Barrier'.
instadd, instdisp, instget

## Purpose <br> Construct bond instrument

Syntax	```InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) [FieldList, ClassList, TypeString] = instbond```	
Arguments	InstSet	Instrument variable. This argument is specified only when adding bond instruments to an existing instrument set. See instget for more information on the InstSet variable.
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default $=2$.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.


FirstCouponDate	(Optional) Date when a bond makes its first coupon   payment. When FirstCouponDate and LastCouponDate   are both specified, FirstCouponDate takes precedence in   determining the coupon payment structure.
LastCouponDate	(Optional) Last coupon date of a bond prior to the   maturity date. In the absence of a specified
	FirstCouponDate, a specified LastCouponDate   determines the coupon structure of the bond. The coupon   structure of a bond is truncated at the LastCouponDate   regardless of where it falls and is followed only by the   bond's maturity cash flow date.
StartDate	Ignored.
Face	(Optional) Face or par value. Default =100.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

See Also

InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) creates a new instrument set containing bond instruments or adds bond instruments to a existing instrument set.
[FieldList, ClassList, TypeString] = instbond displays the classes.
FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a bond instrument, TypeString = 'Bond'.
hjmprice, instaddfield, instdisp, instget, intenvprice

## Purpose Construct cap instrument

```
Syntax
InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis,
 Principal)
[FieldList, ClassList, TypeString] = instcap
```

Arguments	InstSet	Instrument variable. This argument is specified only when adding cap instruments to an existing instrument set. See instget for more information on the InstSet variable.
	Strike	Rate at which the cap is exercised, as a decimal number.
	Settle	Settlement date. Serial date number representing the settlement date of the cap.
	Maturity	Serial date number representing the maturity date of the cap.
	Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) The notional principal amount. Default $=100$.

Description InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis,
Principal) creates a new instrument set containing cap instruments or adds
cap instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instcap displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a cap instrument, TypeString = 'Cap'.

See Also $\begin{aligned} & \text { hjmprice, instaddfield, instbond, instdisp, instfloor, instswap, } \\ & \text { intenvprice }\end{aligned}$

## Purpose

## Description

Syntax	InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis) [FieldList, ClassList, TypeString] = instcf	
Arguments	InstSet	Instrument variable. This argument is specified only when adding cash flow instruments to an existing instrument set. See instget for more information on the InstSet variable.
	CFlowAmounts	Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
	CFlowDates	NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the date of the corresponding cash flow in CFIowAmounts.
	Settle	Settlement date on which the cash flows are priced.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).

Only one data argument is required to create an instrument. Other arguments can be omitted or passed as empty matrices []. Dates can be input as serial date numbers or date strings.
Construct cash flow instrument

```
InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis)
[FieldList, ClassList, TypeString] = instcf
```

InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis) creates a new instrument set from data arrays or adds instruments of type CashFlow to an instrument set.
[FieldList, ClassList, TypeString] = instcf lists field meta-data for an instrument of type CashFlow.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString specifies the type of instrument added, e.g., TypeString = 'CashFlow'.

See Also instadd, instdisp, instget, intenvprice

Purpose

## Syntax

Arguments

Construct compound option

```
InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle,
 UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
 CExerciseDates, CAmericanOpt)
[FieldList, ClassList, TypeString] = instcompound
```

InstSet	Variable containing a collection of instruments.   Instruments are classified by type; each type can have   different data fields. The stored data field is a row vector   or string for each instrument.
UOptSpec	String = ' Call' or 'Put '.
UStrike	1-by-1 vector of strike price values.
USettle	1-by-1 vector of Settle dates.


CSettle	1-by-1 vector containing the settlement or trade date.
CExerciseDates	For a European option (CAmericanOpt $=0$ ):      NINST-by-1 vector of exercise dates. Each row is the   schedule for one option. For a European option, there is   only one exercise date, the option expiry date.
	For an American option (CAmericanOpt = 1):
	NINST-by-2 vector of exercise date boundaries. For each   instrument, the option can be exercised on any tree date   between or including the pair of dates on that row. If   only one non-NaN date is listed, or if ExerciseDates is
	NINST-by-1, the option can be exercised between the   valuation date of the stock tree and the single listed
CAmericanOpt	exercise date.
	If CAmericanOpt $=0$, NaN, or is unspecified, the option is   a European option. If CAmericanOpt = 1, the option is an   American option.

Description $\quad$| InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle, |
| :--- |
| UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, |
| CExerciseDates, CAmericanOpt) specifies a compound option. |
|  |
|  |
| [FieldList, ClassList, TypeString] = instcompound displays the |
| classes. |

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.
ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a compound option instrument, TypeString = 'Compound'.

## See Also <br> instadd, instdisp, instget

Purpose

## Syntax

Arguments

Description

Complement of instrument set by matching conditions
ISubSet = instdelete(InstSet, 'FieldName', FieldList, 'Data',

DataList, 'Index', IndexSet, 'Type', TypeList) $\quad$\begin{tabular}{l}
Variable containing a collection of instruments. <br>
InstSet <br>
FieldList <br>
Instruments are classified by type; each type can have <br>
different data fields. The stored data field is a row vector <br>
or string for each instrument.

$\quad$

String or number of fields (NFIELDS)-by-1 cell array of <br>
strings listing the name of each data field to match with <br>
data values.
\end{tabular}

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all.

The output argument ISubSet contains instruments not matching the input criteria. Instruments are deleted from ISubSet if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName. See instfind for more examples on matching criteria.

## Examples

## See Also

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat. The variable contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
Create a new variable, ISet, with all options deleted.

```
ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet)
Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000
Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6
```

instaddfield, instfind, instget, instselect

## Purpose

Syntax CharTable = instdisp(InstSet)
Arguments

Description

## Examples

Display instruments

InstSet Variable containing a collection of instruments. See instaddfield for examples on constructing the variable.

CharTable = instdisp(InstSet) creates a character array displaying the contents of an instrument collection, InstSet. If instdisp is called without output arguments, the table is displayed in the Command Window.

CharTable is a character array with a table of instruments in InstSet. For each instrument row, the Index and Type are printed along with the field contents. Field headers are printed at the tops of the columns.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000

Index	Type	Strike	Price Opt	Contracts
5	Option 105	7.4 Put	-1000	
6	Option 95	2.9 Put	0	
Index	Type Price	Maturity	Contracts	
7	TBill 99	01-Jul-1999	6	

See Also<br>datestr in the Financial Toolbox documentation<br>num2str in the MATLAB Reference<br>instaddfield, instget

## Purpose

Syntax FieldList = instfields(InstSet, 'Type', TypeList)
Arguments

Description

Examples
List field names

```
FieldList = instfields(InstSet, 'Type', TypeList)
```

InstSet Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell array of strings listing the instrument types to query.

FieldList = instfields(InstSet, 'Type', TypeList) retrieves the list of fields stored in an instrument variable.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field corresponding to the listed types.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts

4 Futures 01-Jul-1999 104.4-1000
Index Type Strike Price Opt Contracts
$5 \quad$ Option $105 \quad$ 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

```
Get the fields listed for type 'Option'.
[FieldList, ClassList] = instfields(ExampleInst, 'Type',...
'Option')
FieldList =
 'Strike'
 'Price'
 'Opt'
 'Contracts'
ClassList =
 'dble'
 'dble'
 'char'
 'dble'
```

Get the fields listed for types 'Option' and 'TBill'.
FieldList = instfields(ExampleInst, 'Type', \{'Option', 'TBill'\})
FieldList =
'Strike'
'Opt
'Price'
'Maturity'
'Contracts'

Get all the fields listed in any type in the variable.

```
FieldList = instfields(ExampleInst)
FieldList =
```

    'Delivery'
    'F'
'Strike'
'Opt'
'Price'
'Maturity'
'Contracts'

See Also
instdisp, instlength, insttypes

Purpose	Search instruments for matching conditions
Syntax	```IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet, 'Type', TypeList)```
Arguments	InstSet Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
	FieldList String or number of fields (NFIELDS)-by-1 cell array of   strings listing the name of each data field to match with   data values.
	DataList   Number of values (NVALUES)-by-M array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data row value to search for in the corresponding FieldList. The number of columns is arbitrary, and matching will ignore trailing NaNs or spaces.
	IndexSet (Optional) Number of instruments (NINST)-by-1 vector restricting positions of instruments to check for matches. The default is all indices available in the instrument variable.
	TypeList   (Optional) String or number of types (NTYPES)-by-1 cell array of strings restricting instruments to match one of TypeList types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all.

Description IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', DataList,'Index', IndexSet, 'Type', TypeList) returns indices of instruments matching Type, Field, or Index values.

IndexMatch is an NINST-by- 1 vector of positions of instruments matching the input criteria. Instruments are returned in IndexMatch if all the Field, Index,

## Examples

and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000

Index	Type	Strike	Price	Opt	Contracts
5	Option	105	7.4	Put	-1000
6	Option	95	2.9	Put	0

Index Type Price Maturity Contracts
$7 \quad$ TBill 99 01-Jul-1999 6
Make a vector, Opt95, containing the indexes within ExampleInst of the options struck at 95.

```
Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data', 95)
Opt95 =
```

    1
    6

Locate the futures and Treasury bill instruments within ExampleInst.

```
Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})
Types =
```

4
7

## See Also

instaddfield, instget, instgetcell, instselect

Purpose
Construct fixed-rate instrument
Arguments

Description

```
Syntax
InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset, Basis, Principal)
[FieldList, ClassList, TypeString] = instfixed
```

InstSet	Instrument variable. This argument is specified only when adding fixed-rate note instruments to an existing instrument set. See instget for more information on the InstSet variable.
CouponRate	Decimal annual rate.
Settle	Settlement date. Date string or serial date number representing the settlement date of the fixed-rate note.
Maturity	Date string or serial date number representing the maturity date of the fixed-rate note.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
Principal	(Optional) The notional principal amount. Default $=100$.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

InstSet = instfixed(InstSet, Strike, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing fixed-rate instruments or adds fixed-rate instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfixed displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a fixed-rate instrument, TypeString = 'Fixed'.

See Also
hjmprice, instaddfield, instbond, instcap, instdisp, instswap, intenvprice

## Purpose

Syntax

Arguments

## Description

Spread
Settle Settlement date. Date string or serial date number representing the settlement date of the floating-rate note.

Maturity Date string or serial date number representing the maturity date of the floating-rate note.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

Principal (Optional) The notional principal amount. Default $=100$.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].
Construct floating-rate instrument

```
InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis,
 Principal)
[FieldList, ClassList, TypeString] = instfloat
```

InstSet	Instrument variable. This argument is specified only when adding floating-rate note instruments to an existing instrument set. See instget for more information on the InstSet variable.
Spread	Number of basis points over the reference rate.
Settle	Settlement date. Date string or serial date number representing the settlement date of the floating-rate note.
Maturity	Date string or serial date number representing the maturity date of the floating-rate note.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default $=1$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
Principal	(Optional) The notional principal amount. Default $=$

InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing floating-rate instruments or adds floating-rate instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfloat displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a floating-rate instrument, TypeString = 'Float'.

See Also
hjmprice, instaddfield, instbond, instcap, instdisp, instswap, intenvprice

## Purpose <br> Construct floor instrument

```
Syntax InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis,
 Principal)
[FieldList, ClassList, TypeString] = instfloor
```

Arguments	InstSet
	Instrument variable. This argument is specified only   when adding floor instruments to an existing instrument   set. See instget for more information on the InstSet   variable.
Strike	Rate at which the floor is exercised, as a decimal   number.
Settle	Settlement date. A vector of serial date numbers or date   strings. Settle must be earlier than or equal to
	Maturity.

## Description <br> InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing floor instruments or adds floor instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfloor displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a floor instrument, TypeString = 'Floor'.

See Also<br>hjmprice, instaddfield, instbond, instcap, instdisp, instswap, intenvprice

## Purpose Retrieve data from instrument variable

Syntax	[Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList)	
Arguments	InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
	FieldList	(Optional) String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field to match with data values. FieldList entries can also be either 'Type' or 'Index'; these return type strings and index numbers respectively. The default is all fields available for the returned set of instruments.
	IndexSet	(Optional) Number of instruments (NINST)-by-1 vector of positions of instruments to work on. If TypeList is also entered, instruments referenced must be one of TypeList types and contained in IndexSet. The default is all indices available in the instrument variable.
	TypeList	(Optional) String or number of types (NTYPES)-by-1 cell array of strings restricting instruments to match one of TypeList types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first argument.

## Description

[Data_1, Data_2,..., Data_n] = instget(InstSet, 'FieldName', FieldList, 'Index', Index̄set, 'Type', TypeList) retrieves data arrays from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field in FieldList. Each row corresponds to a separate instrument in IndexSet. Unavailable data is returned as NaN or as spaces.

Data_n is an NINST-by-M array of data contents for the last field in FieldList.

## Examples

```
Retrieve the instrument set ExampleInst from the data file. InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000
Index Type Strike Price Opt Contracts
5 Option \(105 \quad\) 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

Extract the price from all instruments.

```
P = instget(ExampleInst,'FieldName','Price')
P =
```

12.2000
9.2000
6.8000
NaN
7.4000
2.9000
99.0000

Get all the prices and the number of contracts held.

```
[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'})
P =
 12.2000
 9.2000
 6.8000
 Nan
 7.4000
 2.9000
 99.0000
C =
 0
 0
 1000
 -1000
 -1000
 0
 6
```

Compute a value V. Create a new variable ISet that appends $V$ to ExampleInst.

```
V = P.*C
ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',...
V);
instdisp(ISet)
Index Type Strike Price Opt Contracts Value
1 Option 95 12.2 Call 0 0
2 Option 100 9.2 Call 0 0
3 Option 105 6.8 Call 1000 6800
Index Type Delivery F Contracts Value
4 Futures 01-Jul-1999 104.4-1000 NaN
```

Index	Type	Strike	Price Opt	Contracts	Value
5	Option 105	7.4 Put	-1000	-7400	
6	Option 95	2.9 Put	0	0	
Index	Type Price Maturity	Contracts Value			
7	TBill 99	$01-$ Jul-1999	6	594	

Look at only the instruments which have nonzero Contracts.

```
Ind = find(C ~= 0)
Ind =
3
4
5
7
```

Get the Type and Opt parameters from those instruments. (Only options have a stored 'Opt' field.)

```
[T,0] = instget(ExampleInst, 'Index', Ind, 'FieldName',...
{'Type', 'Opt'})
T =
Option
Futures
Option
TBill
0 =
Call
```

Put

Create a string report of holdings Type, Opt, and Value.

```
rstring = [T, O, num2str(V(Ind))]
rstring =
Option Call 6800
Futures NaN
Option Put -7400
TBill 594
```

See Also instaddfield, instdisp, instgetcell

Purpose Retrieve data and context from instrument variable

Syntax

Arguments

## Description

$\begin{array}{ll}\text { FieldList } & \begin{array}{l}\text { (Optional) String or number of fields (NFIELDS)-by-1 cell } \\ \text { array of strings listing the name of each data field to } \\ \text { match with data values. FieldList should not be either } \\ \text { Type or Index; these field names are reserved. The } \\ \text { default is all fields available for the returned set of } \\ \text { instruments. } \\ \text { (Optional) Number of instruments (NINST)-by-1 vector of } \\ \text { positions of instruments to work on. If TypeList is also } \\ \text { entered, instruments referenced must be one of }\end{array} \\ \text { IndexSet } \begin{array}{l}\text { TypeList types and contained in IndexSet. The default } \\ \text { is all indices available in the instrument variable. }\end{array} \\ \text { TypeList } & \begin{array}{l}\text { (Optional) String or number of types (NTYPES)-by-1 cell } \\ \text { array of strings restricting instruments to match one of } \\ \text { TypeList types. The default is all types in the } \\ \text { instrument variable. }\end{array}\end{array}$

Argument value pairs can be entered in any order. The InstSet variable must be the first argument.

```
[DataList, FieldList, ClassList, IndexSet, TypeSet] =
 instgetcell(InstSet, 'FieldName', FieldList, 'Index', IndexSet,
 'Type', TypeList)
```

InstSet	Variable containing a collection of instruments.   Instruments are classified by type; each type can have   different data fields. The stored data field is a row vector   or string for each instrument.
FieldList	(Optional) String or number of fields (NFIELDS)-by-1 cell   array of strings listing the name of each data field to   match with data values. FieldList should not be either   Type or Index; these field names are reserved. The   default is all fields available for the returned set of   instruments.
IndexSet	(Optional) Number of instruments (NINST)-by-1 vector of   positions of instruments to work on. If TypeList is also   entered, instruments referenced must be one of
TypeList types and contained in IndexSet. The default	
Ty all indices available in the instrument variable.	

[DataList, FieldList, ClassList] = instgetcell(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList) retrieves data and context from an instrument variable.

DataList is an NFIELDS-by-1 cell array of data contents for each field. Each cell is an NINST-by-M array, where each row corresponds to a separate instrument in IndexSet. Any data which is not available is returned as NaN or as spaces.

FieldList is an NFIELDS-by-1 cell array of strings listing the name of each field in DataList.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

IndexSet is an NINST-by-1 vector of positions of instruments returned in DataList.

TypeSet is an NINST-by-1 cell array of strings listing the type of each instrument row returned in DataList.

## Examples

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000

Index Type Strike Price Opt Contracts
5 Option $105 \quad$ 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Get the prices and contracts from all instruments.

```
FieldList = {'Price'; 'Contracts'}
DataList = instgetcell(ExampleInst, 'FieldName', FieldList)
P = DataList{1}
C = DataList{2}
P =
 12.2000
 9.2000
 6.8000
 NaN
 7.4000
 2.9000
 99.0000
C =
 0
 0
 1 0 0 0
 -1000
 -1000
 0
 6
```

Get all the option data: Strike, Price, Opt, Contracts.

```
[DataList, FieldList, ClassList] = instgetcell(ExampleInst,...
'Type','Option')
DataList =
 [5x1 double]
 [5x1 double]
 [5x4 char]
 [5x1 double]
```

```
FieldList =
 'Strike'
 'Price'
 'Opt'
 'Contracts'
ClassList =
 'dble'
 'dble'
 'char'
 'dble'
```

Look at the data as a comma separated list. Type help lists for more information on cell array lists.

```
DataList{:}
ans =
 95
 100
 105
 105
 95
ans =
 12.2100
 9.2000
 6.8000
 7.3900
 2.9000
```


## instgetcell

```
ans =
 Call
 Call
 Call
 Put
 Put
ans =
 0
 0
 100
 -100
 O
```

[^0]Purpose Count instruments
Syntax ..... NInst = instlength(InstSet)
Arguments ..... InstSet
Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Description NInst = instlength(InstSet) computes NInst, the number of instruments contained in the variable, InstSet.
See Also instdisp, instfields, insttypes

## Purpose Construct lookback option

```
Syntax
```

Arguments

InstSet

OptSpec $\quad$ NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates.

ExerciseDates For a European option (AmericanOpt $=0$ ):
NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (American0pt $=1$ ):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt $=0$, NaN, or is unspecified, the option is a European option. If American0pt $=1$, the option is an American option.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

See Also

InstSet = instlookback(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) specifies a lookback option.
[FieldList, ClassList, TypeString] = instlookback displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a lookback option instrument, TypeString = 'Lookback'.

## Purpose Construct bond option

Syntax	```InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt) [FieldList, ClassList, TypeString] = instoptbnd```	
Arguments	InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
	BondIndex	Number of instruments (NINST)-by-1 vector of indices pointing to underlying instruments of Type 'Bond which are also stored in InstSet. See instbond for information on specifying the bond data.
	OptSpec	NINST-by-1 list of string values 'Call' or 'Put'.

The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European or Bermuda option. If AmericanOpt = 1, the option is an American option.

Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.

NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

## See Also

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates) specifies a European or Bermuda option.

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates, American0pt) specifies an American option if American0pt is set to 1. If American0pt is not set to 1, the function specifies a European or Bermuda option.
[FieldList, ClassList, TypeString] = instoptbnd displays the classes.
FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a bond option instrument, TypeString = 'OptBond'.
hjmprice, instadd, instdisp, instget

## Purpose Construct stock option

Syntax	```InstSet = instoptstock(InstSet, StockIndex, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) [FieldList, ClassList, TypeString] = instoptstock```	
Arguments	InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
	StockIndex	Number of instruments (NINST)-by-1 vector of indices pointing to underlying instruments of type 'Stock' which are also stored in InstSet.
	OptSpec	NINST-by-1 list of string values 'Call' or 'Put'.

The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European or Bermuda option. If AmericanOpt = 1, the option is an American option.

Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

American option: NINST-by-1 vector of strike price values for each option.

Settle NINST-by-1 vector of settlement dates.

ExerciseDates
NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

See Also instadd, instdisp, instget

## Purpose Create instrument subset by matching conditions

Syntax	$\begin{gathered} \text { InstSubSet }= \\ \text { DataList, } \end{gathered}$	select(InstSet, 'FieldName', FieldList, 'Data', Index', IndexSet, 'Type', TypeList)
Arguments	InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
	FieldList	String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field to match with data values.
	DataList	Number of values (NVALUES)-by-M array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data row value to search for in the corresponding FieldList. The number of columns is arbitrary and matching will ignore trailing NaNs or spaces.
	IndexSet	(Optional) Number of instruments (NINST)-by-1 vector restricting positions of instruments to check for matches. The default is all indices available in the instrument variable.
	TypeList	(Optional) String or number of types (NTYPES)-by-1 cell array of strings restricting instruments to match one of TypeList types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all. 'Index' and 'Type' arguments are each optional.

## Description

InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet, 'Type', TypeList) creates an instrument subset (InstSubSet) from an existing set of instruments (InstSet).

InstSubSet is a variable containing instruments matching the input criteria. Instruments are returned in InstSubSet if all the Field, Index, and Type

## Examples

conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName. See instfind for examples on matching criteria.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. The variable contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000

Index	Type	Strike	Price	Opt	Contracts
5	Option	105	7.4	Put	-1000
6	Option	95	2.9	Put	0

Index Type Price Maturity Contracts
$7 \quad$ TBill 99 01-Jul-1999 6

Make a new portfolio containing only options struck at 95.

```
Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',...
'Data', '95')
instdisp(Opt95)
Opt95 =
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0
```

Make a new portfolio containing only futures and Treasury bills.

```
FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})
instdisp(FutTBill) =
Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000
Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6
```

See Also instaddfield, instdelete, instfind, instget, instgetcell

Purpose

## Syntax

## Description

Arguments	InstSet	(Required) Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument. InstSet must be the first argument in the list.
	FieldList	String or number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field. FieldList cannot be named with the reserved names Type or Index.
	DataList	Number of instruments (NINST)-by-M array or NFIELDS-by- 1 cell array of data contents for each field. Each row in a data array corresponds to a separate instrument. Single rows are copied to apply to all instruments to be worked on. The number of columns is arbitrary, and data is padded along columns.
	IndexSet	NINST-by-1 vector of positions of instruments to work on. If TypeList is also entered, instruments referenced must be one of TypeList types and contained in IndexSet.
	TypeList	String or number of types (NTYPES)-by-1 cell array of strings restricting instruments worked on to match one of TypeList types.

Argument value pairs can be entered in any order.
Add or reset data for existing instruments

```
InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data',
 DataList)
InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data',
 DataList, 'Index', IndexSet, 'Type', TypeList)
```

instsetfield sets data for existing instruments in a collection variable.
InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', DataList) resets or adds fields to every instrument.

## instsetfield

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet, 'Type', TypeList) resets or adds fields to a subset of instruments.

The output InstSet is a new instrument set variable containing the input data.

## Examples

Retrieve the instrument set ExampleInstSF from the data file InstSetExamples.mat. ExampleInstSF contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
ISet = ExampleInstSF;
instdisp(ISet)

Index	Type	Strike	Price	Opt
1	Option	95	12.2	Call
2	Option 100	9.2	Call	
3	Option 105	6.8	Call	

Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put
Index Type Price
$7 \quad$ TBill 99
Enter data for the option in Index 6: Price 2.9 for a Strike of 95.

```
ISet = instsetfield(ISet, 'Index',6,...
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 });
instdisp(ISet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
```

Index	Type	Strike	Price	Opt
5	Option	105	7.4	Put
6	Option	95	2.9	Put

```
Index Type Price
```

$7 \quad$ TBill 99

Create a new field Maturity for the cash instrument.

```
MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',...
'Maturity','FieldClass', 'date', 'Data', MDate);
instdisp(ISet)
Index Type Price Maturity
7 TBill 99 01-Jul-1999
```

Create a new field Contracts for all instruments.

```
ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', O);
instdisp(ISet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 0
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 0
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put 0
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 0
```


## instsetfield

Set the Contracts fields for some instruments.

```
ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],...
'FieldName','Contracts', 'Data', [1000; -1000; -1000; 6]);
instdisp(ISet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

See Also instaddfield, instdisp, instget, instgetcell

## Purpose

## Syntax

Arguments

InstSet	Instrument variable. This argument is specified only when adding a swap to an existing instrument set. See instget for more information on the InstSet variable.
LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined as:
	[CouponRate Spread] or [Spread CouponRate]
	CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg.
Settle	Settlement date. NINST-by-1 vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap.
LegReset	(Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [11].
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).


	Principal	(Optional) NINST-by-1 vector of the notional principal amounts. Default $=100$.
	LegType	(Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is $[1,0]$ for each instrument.
	Data argu empty. Fill required to empty mat	number of instruments (NINST)-by-1 vectors, scalar, or fied entries in vectors with NaN. Only one data argument is he instrument; the others may be omitted or passed as
Description	InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) creates a new instrument set containing swap instruments or adds swap instruments to an existing instrument set.	
	[FieldList, ClassList, TypeString] = instswap displays the classes.   FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.	
	ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.	
	TypeString is a string specifying the type of instrument added. For a swap instrument, TypeString = 'Swap'.	
See Also	hjmprice, instaddfield, instbond, instcap, instdisp, instfloor, intenvprice	

Purpose
Syntax $\quad$ TypeList $=$ insttypes (InstSet)

Arguments

Description

Examples

List types

InstSet Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.

TypeList = insttypes(InstSet) retrieves a list of types stored in an instrument variable.

TypeList is a number of types (NTYPES)-by- 1 cell array of strings listing the Type of instruments contained in the variable.

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	

Index Type Delivery F Contracts

4 Futures 01-Jul-1999 104.4-1000

Index	Type	Strike	Price	Opt
Contracts				
5	Option	105	7.4 Put	-1000
6	Option	95	2.9	Put

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

List all of the types included in ExampleInst.

```
TypeList = insttypes(ExampleInst)
TypeList =
 'Futures'
 'Option'
 'TBill'
```


## See Also <br> instdisp, instfields, instlength

Purpose
Syntax ParameterValue = intenvget(RateSpec, 'ParameterName')

RateSpec A structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

ParameterName String indicating the parameter name to be accessed. The value of the named parameter is extracted from the structure RateSpec. It is sufficient to type only the leading characters that uniquely identify the parameter. Case is ignored for parameter names.

Description ParameterValue = intenvget(RateSpec,'ParameterName') obtains the value of the named parameter ParameterName extracted from RateSpec.

## Examples

Use intenvset to set the interest-rate structure.

```
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
 '20-Jan-2000', 'EndDates', '20-Jan-2001')
```

Now use intenvget to extract the values from RateSpec.
[R, RateSpec] = intenvget(RateSpec, 'Rates')
$\mathrm{R}=$
0.0500

## intenvget

RateSpec =

```
 FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9518
Rates: 0.0500
EndTimes: 2
StartTimes: O
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1
```

See Also
intenvset

Purpose
Price instruments from set of zero curves
Syntax Price = intenvprice (RateSpec, InstSet)

Arguments

## Description

Price = intenvprice(RateSpec, InstSet) computes arbitrage free prices for instruments against a set of zero coupon bond rate curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of prices of each instrument. If an instrument cannot be priced, a NaN is returned in that entry.
intenvprice handles the following instrument types: 'Bond', 'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information about constructing defined types.

See single-type pricing functions to retrieve pricing information.
bondbyzero Price bonds from a set of zero curves.
cfbyzero Price arbitrary cash flow instrument from a set of zero curves.
fixedbyzero Fixed-rate note prices from a set of zero curves.
floatbyzero Floating-rate note prices from a set of zero curves.
swapbyzero Swap prices from a set of zero curves.

## intenvprice

## Examples <br> ```load deriv.mat \\ instdisp(ZeroInstSet)```

Load the zero curves and instruments from a data file.


See Also hjmprice, hjmsens, instadd, intenvsens, intenvset

## Purpose

Syntax
Arguments

## Description

Instrument price and sensitivities from set of zero curves

```
[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)
```

RateSpec	A structure containing the properties of an interest-rate   structure. See intenvset for information on creating
RateSpec.	

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet) computes dollar prices and price sensitivities for instruments that use a zero coupon bond rate structure.

Delta is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of deltas, representing the rate of change of instrument prices with respect to shifts in the observed forward yield curve. Delta is computed by finite differences.

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the rate of change of instrument deltas with respect to shifts in the observed forward yield curve. Gamma is computed by finite differences.

Note Both sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If an instrument cannot be priced, a NaN is returned.
intenvsens handles the following instrument types: 'Bond', 'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information about constructing defined types.

## Examples

Load the tree and instruments from a data file.

```
load deriv.mat
instdisp(ZeroInstSet)
```


[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)
Delta =
-272. 6403
-347. 4386
-272. 6403
- 1.0445
$-282.0405$
Gamma =
$1.0 e+003$ *
1.0298
1.6227
1.0298
0.0033
1.0596

See Also
hjmprice, hjmsens, instadd, intenvprice, intenvset

## Purpose

Set properties of interest-rate structure

## Syntax [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1', Value1, 'Argument2', Value2, ...) <br> [RateSpec, RateSpecOld] = intenvset <br> intenvset <br> Arguments RateSpec (Optional) An existing interest-rate specification structure to be changed, probably created from a previous call to intenvset.

Arguments may be chosen from the table below and specified in any order.

$\left.\begin{array}{ll}\text { Rates } & \begin{array}{l}\text { Number of points (NPOINTS) by number of curves } \\ \text { (NCURVES) matrix of rates in decimal form. For } \\ \text { example, } 5 \% \text { is } 0.05 \text { in Rates. Rates are the yields over } \\ \text { investment intervals from StartDates, when the cash } \\ \text { flow is valued, to EndDates, when the cash flow is } \\ \text { received. }\end{array} \\ \text { EndDates } & \text { NPOINTS-by-1 vector or scalar of serial maturity dates } \\ \text { ending the interval to discount over. }\end{array}\right\}$

It is sufficient to type only the leading characters that uniquely identify the parameter. Case is ignored for argument names.

When creating a new RateSpec, the set of arguments passed to intenvset must include StartDates, EndDates, and either Rates or Disc.

Call intenvset with no input or output arguments to display a list of argument names and possible values.

## Description

## Examples

[RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1', Value1, 'Argument2', Value2, ...) creates an interest term structure (RateSpec) in which the input argument list is specified as argument name /argument value pairs. The argument name portion of the pair must be recognized as a valid field of the output structure RateSpec; the argument value portion of the pair is then assigned to its paired field.

If the optional argument RateSpec is specified, intenvset modifies an existing interest term structure RateSpec by changing the named argument to the specified values and recalculating the arguments dependent on the new values.
[RateSpec, RateSpecOld] = intenvset creates an interest term structure RateSpec with all fields set to [].
intenvset with no input or output arguments displays a list of argument names and possible values.

RateSpecOld is a structure containing the properties of an interest-rate structure prior to the changes introduced by the call to intenvset.

Use intenvset to create a RateSpec.

```
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')
RateSpec =
 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9518
 Rates: 0.0500
 EndTimes: 2
 StartTimes: 0
 EndDates: 730871
 StartDates: 730505
 ValuationDate: 730505
 Basis: 0
 EndMonthRule: 1
```

```
Now change the Compounding argument to 1 (annual).
RateSpec = intenvset(RateSpec, 'Compounding', 1)
RateSpec =
 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.9518
 Rates: 0.0506
 EndTimes: 1
 StartTimes: 0
 EndDates: 730871
 StartDates: 730505
 ValuationDate: 730505
 Basis: 0
 EndMonthRule: 1
```

Calling intenvset with no input or output arguments displays a list of argument names and possible values.

```
intenvset
```

```
 Compounding: [1 | {2} | 3 | 4 | 6 | 12 | 365 | -1]
 Disc: [scalar | vector (NPOINTS x 1)]
 Rates: [scalar | vector (NPOINTS x 1)]
 EndDates: [scalar | vector (NPOINTS x 1)]
 StartDates: [scalar | vector (NPOINTS x 1)]
ValuationDate: [scalar]
 Basis: [{0} | 1 | 2 | 3]
EndMonthRule: [0 | {1}]
```

See Also intenvget

Purpose
True if financial structure type or financial object class

## Syntax IsFinObj = isafin(Obj, ClassName)

Arguments	Obj	Name of a financial structure.
	ClassName	String containing name of financial structure class.

Description

## Examples

load deriv.mat
IsFinObj = isafin(HJMTree, 'HJMFwdTree')
IsFinObj =
1
See Also classfin

Purpose Price lookback option from CRR tree

Syntax	[Price, PriceT ExerciseDat	```] = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, AmericanOpt)```
Arguments	CRRTree	Stock tree structure created by crrtree.
	OptSpec	Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.
	Strike	NINST-by-1 vector of strike price values. Each row is the schedule for one option. To calculate the value of a floating-strike lookback option, specify Strike as NaN.
	Settle	NINST-by-1 vector of Settle dates. The settle date for every lookback is set to the valuation date of the stock tree. The lookback argument Settle is ignored.
	ExerciseDates	For a European option (AmericanOpt $=0$ ):
		NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (AmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt $=0, N a N$, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

## Examples

## See Also

References
[Price, PriceTree] = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) calculates the value of fixed- and floating-strike lookback options.

Price is a NINST-by- 1 vector of expected option prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Price a lookback option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
load deriv;
Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
```

Price $=$
7.6015
crrtree, instlookback
Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Fall 1993, pp. 21-31.

Purpose Price lookback option from EQP binomial tree

Syntax	[Price, Price ExerciseDat	```] = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, AmericanOpt)```
Arguments	EQPTree	Stock tree structure created by eqptree.
	OptSpec	Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.
	Strike	NINST-by-1 vector of strike price values. Each row is the schedule for one option. To calculate the value of a floating-strike lookback option, specify Strike as NaN.
	Settle	NINST-by-1 vector of Settle dates. The settle date for every lookback is set to the valuation date of the stock tree. The lookback argument Settle is ignored.
	ExerciseDates	For a European option (American0pt = 0):
		NINST-by- 1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (AmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt $=0, N a N$, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

## Examples

## See Also

References
[Price, PriceTree] = lookbackbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt) calculates the value of fixed- and floating-strike lookback options.

Price is a NINST-by- 1 vector of expected option prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Price a lookback option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.

```
load deriv
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExcerciseDates = '01-Jan-2006';
Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)
```

Price =
8.7941
eqptree, instlookback
Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Fall 1993, pp. 21-31.

## Purpose Create bushy tree

Syntax	[Tree, NumStates] NodeVal)	$=\text { mkbush(NumLevels, NumChild, NumPos, Trim, }$
Arguments	NumLevels	Number of time levels of the tree.
	NumChild	1 by number of levels (NUMLEVELS) vector with number of branches (children) of the nodes in each level.
	NumPos	1-by-NUMLEVELS vector containing the length of the state vectors in each time level.
	Trim	(Optional) Scalar 0 or 1. If Trim $=1$, NumPos decreases by 1 when moving from one time level to the next. Otherwise, if Trim = 0 (Default), NumPos does not decrease.
	NodeVal	(Optional) Initial value at each node of the tree. Default $=\mathrm{NaN}$.
Description	[Tree, NumStates] NodeVal) creates a NumStates is a 1-by-N each level.	= mkbush(NumLevels, NumChild, NumPos, Trim, bushy tree Tree with initial values NodeVal at each node. NUMLEVELS vector containing the number of state vectors in

## Examples

## See Also

Create a tree with four time levels, two branches per node, and a vector of three elements in each node with each element initialized to NaN .

```
Tree = mkbush(4, 2, 3);
treeviewer(Tree)
```


bushpath, bushshape
Purpose Create recombining binomial tree
Syntax

Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree)

Arguments
NumLevels Number of time levels of the tree.
NumPos 1-by-NUMLEVELS vector containing the length of the state vectors in each time level.
NodeVal (Optional) Initial value at each node of the tree. Default $=$ NaN .
IsPriceTree branch is added to the tree. Default $=0$.
Description
Examples

Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree) creates a recombining tree Tree with initial values NodeVal at each node.

Create a recombining tree of four time levels with a vector of two elements in each node and each element initialized to NaN .

$$
\text { Tree }=\text { mktree }(4,2) \text {; }
$$

treepath, treeshape

Purpose
Create recombining trinomial tree

Syntax	TrinTree = mktrintree(NumLevels, NumPos, NumStates, NodeVal)
Arguments	NumLevels $\quad$ Number of time levels of the tree.
	$\begin{array}{ll}\text { NumPos } & \text { 1-by-NUMLEVELS vector containing the length of the state } \\ \text { vectors in each time level. }\end{array}$
	$\begin{array}{ll}\text { NumStates } & \begin{array}{l}\text { 1-by-NUMLEVELS vector containing the number of state } \\ \text { vectors in each time level. }\end{array}\end{array}$
	NodeVal (Optional) Initial value at each node of the tree.   Default $=$ NaN.
Description	TrinTree = mktrintree(NumLevels, NumPos, NumStates, NodeVal) creates a recombining tree Tree with initial values NodeVal at each node.
Examples	Create a recombining trinomial tree of four time levels with a vector of two elements in each node and each element initialized to NaN .
See Also	trintreepath, trintreeshape

Purpose

## Syntax

Arguments
Description

## Examples

Create money-market tree from BDT interest-rate tree
MMktTree $=$ mmktbybdt (BDTTree)
BDTTree
Interest-rate tree structure created by bdttree.

MMktTree $=$ mmktbybdt (BDTTree) creates a money-market tree from an interest-rate tree structure created by bdttree.

```
load deriv.mat;
 MMktTree = mmktbybdt(BDTTree);
 treeviewer(MMktTree)
```



## See Also

bdttree

## Purpose

## Syntax <br> MMktTree $=$ mmktbyhjm(HJMTree)

Arguments

Description

Examples forward-rate tree structure created by hjmtree.

Create money-market tree from HJM interest-rate tree

HJMTree forward-rate tree structure created by hjmtree.

MMktTree $=$ mmktbyhjm(HJMTree) creates a money-market tree from a

```
load deriv.mat;
 MMktTree = mmktbyhjm(HJMTree);
 treeviewer(MMktTree)
```



See Also
hjmtree
Purpose Price bond option from BDT interest-rate tree

Syntax	[Price, PriceTree ExerciseDates, Period, Basis, LastCouponDate,	] = optbndbybdt(BDTTree, OptSpec, Strike, AmericanOpt, CouponRate, Settle, Maturity, EndMonthRule, IssueDate, FirstCouponDate, StartDate, Face, Options)
Arguments	BDTTree	forward-rate tree structure created by bdttree.
	OptSpec	Number of instruments (NINST)-by-1 cell array of string values 'Call' or 'Put'.
	Strike	European option: NINST-by-1 vector of strike price values.
		Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.
		Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
		For an American option:
		NINST-by-1 vector of strike price values for each option.
	ExerciseDates	NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
		For an American option:
		NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.


AmericanOpt	NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 (American).
CouponRate	Decimal annual rate.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default $=2$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate	Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and is followed only by the bond's maturity cash flow date.

StartDate Ignored.
Face Face value. Default is 100.
Options (Optional) Derivatives pricing options structure created with derivset.

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond argument settle is ignored.

## Description

Examples
[Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a BDT interest-rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Example 1. Using the BDT interest-rate tree in the deriv.mat file, price a European call option on a $10 \%$ bond with a strike of 95 . The exercise date for the option is Jan. 01, 2002. The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and forward-rate information needed to price the bond.

```
load deriv;
```

Use optbondbybdt to compute the price of the option.

```
Price = optbndbybdt(BDTTree,'Call','95','01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003', '1')
Price =
```

1.7657

Example 2. Now use optbndbybdt to compute the price of a put option on the same bond.

```
Price = optbndbybdt(BDTTree,'Put','95','01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')
Price =
 0.5740
```

See Also
bdtprice, bdttree, instoptbnd

Purpose Price bond option from Black-Karasinski interest-rate tree

Syntax	[Price, Exerc Perio LastC	```] = optbndbybk(BkTree, OptSpec, Strike, AmericanOpt, CouponRate, Settle, Maturity, EndMonthRule, IssueDate, FirstCouponDate, StartDate, Face, Options)```
Arguments	BkTree	forward-rate tree structure created by bktree.
	OptSpec	Number of instruments (NINST)-by-1 cell array of string values 'Call' or 'Put'.
	Strike	European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.
ExerciseDates NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

AmericanOpt	NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 (American).
CouponRate	Decimal annual rate.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default $=2$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.


LastCouponDate	(Optional) Last coupon date of a bond prior to the   maturity date. In the absence of a specified   FirstcouponDate, a specified LastCouponDate   determines the coupon structure of the bond. The coupon   structure of a bond is truncated at the LastCouponDate   regardless of where it falls and is followed only by the   bond's maturity cash flow date.
StartDate	Ignored.   Face   (Optional) Face value. Default $=100$.
Options	(Optional) Derivatives pricing options structure created   with derivset.

The Settle date for every bond is set to the ValuationDate of the BK tree. The bond argument Settle is ignored.

## Description

[Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a Black-Karasinski interest rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Examples Example 1. Using the BK interest rate tree in the deriv.mat file, price a European call option on a $4 \%$ bond with a strike of 96 . The exercise date for the option is Jan. 01, 2006. The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and forward-rate information needed to price the bond.

```
load deriv;
```

Use optbondbybk to compute the price of the option.

```
Price = optbndbybk(BKTree,'Call','96','01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
```

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

```
Price =
 0.1512
```

Example 2. Now use optbndbybk to compute the price of a put option on the same bond.

```
Price = optbndbybk(BKTree,'Put','96','01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
```

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
0.0272

See Also
bkprice, bktree, instoptbnd

Purpose Price bond option from HJM interest-rate tree


Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.
ExerciseDates NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

AmericanOpt	NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 (American).
CouponRate	Decimal annual rate.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default $=2$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.


LastCouponDate	(Optional) Last coupon date of a bond prior to the   maturity date. In the absence of a specified   FirstcouponDate, a specified LastCouponDate   determines the coupon structure of the bond. The coupon   structure of a bond is truncated at the LastCouponDate   regardless of where it falls and is followed only by the   bond's maturity cash flow date.
StartDate	Ignored.
Face	(Optional) Face value. Default $=100$.
Options	(Optional) Derivatives pricing options structure created   with derivset.

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument Settle is ignored.

Description | [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, |
| :--- |
| ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, |
| Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, |
| StartDate, Face, Options) computes the price of a bond option from an |
|  |
| HJM forward-rate tree. |

Price is an NINST-by-1 matrix of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Examples Using the HJM forward-rate tree in the deriv.mat file, price a European call option on a $4 \%$ bond with a strike of 96 . The exercise date for the option is Jan. 01, 2003. The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the bond.

```
load deriv;
```

Use optbondbyhjm to compute the price of the option.

```
Price = optbndbyhjm(HJMTree,'Call','96','01-Jan-2003',...
'0','0.04','01-Jan-2000','01-Jan-2004')
```

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

```
Price =
```

2.2410

See Also
hjmprice, hjmtree, instoptbnd

Purpose Price bond option from Hull-White interest-rate tree

Syntax	[Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
Arguments	HWTree forward-rate tree structure created by hwtree.
	OptSpec Number of instruments (NINST) -by-1 cell array of string   values 'Call' or 'Put'.
	Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.
ExerciseDates NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

AmericanOpt	NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 (American).
CouponRate	Decimal annual rate.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4, 6, and 12.   Default $=2$.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.


LastCouponDate	(Optional) Last coupon date of a bond prior to the   maturity date. In the absence of a specified   FirstCouponDate, a specified LastCouponDate   determines the coupon structure of the bond. The coupon   structure of a bond is truncated at the LastCouponDate   regardless of where it falls and is followed only by the   bond's maturity cash flow date.
StartDate	Ignored.
Face	(Optional) Face value. Default $=100$.
Options	(Optional) Derivatives pricing options structure created   with derivset.

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond argument Settle is ignored.

## Description

## Examples

Example 1. Using the HW interest rate tree in the deriv.mat file, price a European call option on a $4 \%$ bond with a strike of 96 . The exercise date for the option is Jan. 01, 2006. The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and forward-rate information needed to price the bond.

```
load deriv;
```

Use optbondbyhw to compute the price of the option.

```
Price = optbndbyhw(HWTree,'Call','96','01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
```

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

```
Price =
```

1.1556

Example 2. Now use optbndbyhw to compute the price of a put option on the same bond.

```
Price = optbndbyhw(HWTree,'Put','96','01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
```

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price =
1.0150

See Also
hwprice, hwtree, instoptbnd
Purpose Price stock option from CRR tree

Syntax	[Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)	
Arguments	CRRTree	Stock tree structure created by crrtree.
	OptSpec	Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.
	The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt $=0, N a N$, or is unspecified, the option is a European or Bermuda option. If AmericanOpt = 1, the option is an American option.	
	Strike	European option: NINST-by-1 vector of strike price values.
		Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.
		Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
		American option: NINST-by-1 vector of strike price values for each option.
	Settle	NINST-by- 1 vector of settlement or trade dates.

NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

## Examples

[Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European, Bermuda, or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.
Price a stock option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.

```
load deriv;
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2005';
```


## optstockbycrr

```
Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
 8.2863
```


## See Also

crrtree, instoptstock

Purpose

## Syntax [Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) <br> Arguments <br> EQPTree <br> OptSpec Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.

Price stock option from EQP binomial tree

The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European or Bermuda option. If AmericanOpt = 1, the option is an American option.

Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

American option: NINST-by-1 vector of strike price values for each option.

Settle NINST-by-1 vector of settlement or trade dates.

ExerciseDates NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

## Description

[Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European/Bermuda or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

## Examples

Price a stock option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
load deriv
Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2005';
Price = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
 8.4791
```


## See Also

eqptree, instoptstock

## Purpose Discounting factors from interest rates

```
Syntax
Usage 1: Interval points are input as times in periodic units.
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
```

Usage 2: ValuationDate is passed and interval points are input as dates.

```
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,
 EndDates, StartDates, ValuationDate)
```

Arguments Compounding Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the compounding frequency, $Z$ is the zero rate, and $T$ is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number of days in the basis year and $T$ is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp (-T * Z)$, where $T$ is time in years.
Rates Number of points (NPOINTS) by number of curves (NCURVES) matrix of rates in decimal form. For example, $5 \%$ is 0.05 in Rates. Rates are the yields over investment intervals from StartTimes, when the cash flow is valued, to EndTimes, when the cash flow is received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units ending the interval to discount over.

StartTimes	(Optional) NPOINTS-by-1 vector or scalar of times in   periodic units starting the interval to discount over.   Default $=0$.
EndDates	NPOINTS-by-1 vector or scalar of serial maturity dates   ending the interval to discount over.
StartDates	(Optional) NPOINTS-by-1 vector or scalar of serial dates   starting the interval to discount over.
ValuationDate	Default = ValuationDate.   Scalar value in serial date number form representing the   observation date of the investment horizons entered in   StartDates and EndDates. Required in Usage 2.
Omitted or passed as an empty matrix to invoke Usage	

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes) and [Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate) convert interest rates to cash flow discounting factors. rate2disc computes the discounts over a series of NPOINTS time intervals given the annualized yield over those intervals. NCURVES different rate curves can be translated at once if they have the same time structure. The time intervals can represent a zero curve or a forward curve.

Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal form representing the value at time StartTime of a unit cash flow received at time EndTime.

StartTimes is an NPOINTS-by- 1 column vector of times starting the interval to discount over, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the interval to discount over, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, T , computed from SIA semiannual time factors, Tsemi , by the formula $\mathrm{T}=\mathrm{Tsemi} / 2^{*} \mathrm{~F}$, where F is the compounding frequency.

You can specify the investment intervals either with input times (Usage 1) or with input dates (Usage 2). Entering ValuationDate invokes the date
interpretation; omitting ValuationDate invokes the default time interpretations.

## Examples

Example 1. Compute discounts from a zero curve at 6 months, 12 months, and 24 months. The times to the cash flows are 1,2 , and 4 . You are computing the present value (at time 0 ) of the cash flows.

```
Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)
Disc =
 0 . 9 7 5 6
 0.9426
 0.8799
```

Example 2. Compute discounts from a zero curve at 6 months, 12 months, and 24 months. Use dates to specify the ending time horizon.

```
Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97';
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)
Disc =
 0.9756
 0.9426
 0.8799
```

Example 3. Compute discounts from the one-year forward rates beginning now, in 6 months, and in 12 months. Use monthly compounding. The times to the cash flows are $12,18,24$, and the forward times are $0,6,12$.

```
Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =
 0.9513
 0.9609
 0.9419
```

See Also
disc2rate, ratetimes

## Purpose Change time intervals defining interest-rate environment

## Syntax <br> Usage 1: ValuationDate not passed; third through sixth arguments are interpreted as times. <br> ```[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, \\ RefEndTimes, RefStartTimes, EndTimes, StartTimes)```

Usage 2: ValuationDate passed and interval points input as dates.

```
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
 RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)
```

Arguments Compounding Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the compounding frequency, $Z$ is the zero rate, and $T$ is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where $F$ is the number of days in the basis year and $T$ is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp (-T * Z)$, where $T$ is time in years.
RefRates NREFPTS-by-NCURVES matrix of reference rates in decimal form. RefRates are the yields over investment intervals from RefStartTimes, when the cash flow is valued, to RefEndTimes, when the cash flow is received.

RefEndTimes NREFPTS-by-1 vector or scalar of times in periodic units ending the intervals corresponding to RefRates.
$\left.\begin{array}{ll}\text { RefStartTimes } & \begin{array}{l}\text { (Optional) NREFPTS-by-1 vector or scalar of times in } \\ \text { periodic units starting the intervals corresponding to } \\ \text { RefRates. Default }=0 .\end{array} \\ \text { EndTimes } & \begin{array}{l}\text { NPOINTS-by-1 vector or scalar of times in periodic units } \\ \text { ending the interval to discount over. }\end{array} \\ \text { (Optional) NPOINTS-by-1 vector or scalar of times in } \\ \text { periodic units starting the interval to discount over. } \\ \text { Default = 0. }\end{array}\right\}$

StartTimes is an NPOINTS-by-1 column vector of times starting the new intervals where rates are desired, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the new intervals, measured in periodic units.

If Compounding $=365$ (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, T , computed from SIA semiannual time factors, Tsemi, by the formula $T=T s e m i / 2 * F$, where $F$ is the compounding frequency.

You can specify the investment intervals either with input times (Usage 1) or with input dates (Usage 2). Entering the argument ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

## Examples

Example 1. The reference environment is a collection of zero rates at 6,12 , and 24 months. Create a collection of one year forward rates beginning at 0,6 , and 12 months.

```
RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,...
StartTimes)
Rates =
 0.0600
 0.0688
 0.0700
```

Example 2. Interpolate a zero yield curve to different dates. Zero curves start at the default date of ValuationDate.

```
RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates = [730241; 730486];
ValuationDate = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],...
ValuationDate)
Rates =
 0.0520
 0.0520
```

See Also
disc2rate, rate2disc

## Purpose Create stock structure

Syntax	StockSpec $=$ stockspec (Sigma, AssetPrice, DividendType,   DividendAmounts, ExDividendDates)
Arguments	Sigma
	AssetPrice
	DividendType
	Decimal annual price volatility of underlying security.   (Optional) Dividend type. Must be
	'cash' for actual dollar dividends,

Description StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates) creates a MATLAB structure containing the properties of a stock.

## Examples

```
Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
```

StockSpec =

FinObj:	'StockSpec'
Sigma:	0.2000
AssetPrice:	50
DividendType:	'cash'
DividendAmounts: $[4 \times 1$ double]	
ExDividendDates: $[4 \times 1$ double]	

## See Also

crrprice, crrtree, intenvset

## Purpose Price swap instrument from BDT interest-rate tree

Syntax	[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options)	
Arguments	BDTTree	Interest-rate tree structure created by bdttree.
	LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined as:
		[CouponRate Spread] or [Spread CouponRate]
		CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg.
	Settle	Settlement date. NINST-by-1 vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap.
	LegReset	(Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [11 1 1 .
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amounts. Default $=100$.


LegType	(Optional) NINST-by-2 matrix. Each row represents an   instrument. Each column indicates if the corresponding   leg is fixed (1) or floating (0). This matrix defines the   interpretation of the values entered in LegRate. Default   is [1 0 0 for each instrument.
Options	(Optional) Derivatives pricing options structure created   with derivset.

The Settle date for every swap is set to the ValuationDate of the BDT tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

## Description

## Examples

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) computes the price of a swap instrument from a BDT interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0.

PriceTree is a tree structure with a vector of the swap values at each node.
CFTree is a tree structure with a vector of the swap cash flows at each node. This structure contains only NaNs because with binomial recombining trees, cash flows cannot be computed accurately at each node of a tree.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is padded with NaN for those instruments in which CouponRate is not set to NaN.

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are

- Coupon rate for fixed leg: 0.15 ( $15 \%$ )
- Spread for floating leg: 10 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.

```
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Price the swap using the BDTTree included in the MAT-file deriv.mat. BDTTree contains the time and forward-rate information needed to price the instrument.

```
load deriv;
```

Use swapbybdt to compute the price of the swap.

```
Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)
Price =
```

    7.4222
    Example 2. Using the previous data, calculate the swap rate, the coupon rate for the fixed leg such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
 -1.4211e-014
PriceTree =
 FinObj: 'BDTPriceTree'
 tObs: [0 1 2 3 4]
 PTree: {1x5 cell}
```

```
CFTree =
 FinObj: 'BDTCFTree'
 tObs: [0 1 2 3 4]
 CFTree: {[NaN] [NaN NaN] [NaN NaN NaN] [NaN NaN NaN NaN] ...}
 SwapRate =
 0.1205
```

See Also bdttree, capbybdt, cfbybdt, floorbybdt
Purpose Price swap instrument from Black-Karasinski interest-rate tree

Syntax	[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options)	
Arguments	BKTree	Interest-rate tree structure created by bktree.
	LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined as:
		[CouponRate Spread] or [Spread CouponRate]
		CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg.
	Settle	Settlement date. NINST-by-1 vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap.
	LegReset	(Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [11 1 1 .
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amounts. Default $=100$.


LegType	(Optional) NINST-by-2 matrix. Each row represents an   instrument. Each column indicates if the corresponding   leg is fixed (1) or floating (0). This matrix defines the   interpretation of the values entered in LegRate. Default
is [1 0] for each instrument.	

The Settle date for every swap is set to the ValuationDate of the BK tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

## Description

## Examples

[Price, PriceTree, CFTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) computes the price of a swap instrument from a Black-Karasinski interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0 .

PriceTree is the tree structure with a vector of the swap values at each node.
SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN .

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are

- Coupon rate for fixed leg: 0.15 ( $15 \%$ )
- Spread for floating leg: 10 basis points
- Swap settlement date: Jan. 01, 2005
- Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.

```
Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Price the swap using the BKTree included in the MAT-file deriv.mat.The BKTree structure contains the time and forward-rate information needed to price the instrument.

```
load deriv;
```

Use swapbybk to compute the price of the swap.

```
Price = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset,...
Basis, Principal, LegType)
Price =
```

39.1827

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
 0
PriceTree =
 FinObj: 'BKPriceTree'
 tObs: [00 1 2 3 4]
 PTree: {1x5 cell}
 Connect: {[2] [2 3 4] [2 2 3 4 4]}
 Probs: {[3x1 double] [3x3 double] [3x5 double]}
```


## SwapRate = <br> 0.0438

See Also bktree, bondbybk, capbybk, fixedbybk, floorbybk

## Purpose Price swap instrument from HJM interest-rate tree

Syntax	[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options)	
Arguments	HJMTree	forward-rate tree structure created by hjmtree.
	LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined as:
		[CouponRate Spread] or [Spread CouponRate]
		CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg.
	Settle	Settlement date. NINST-by-1 vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap.
	LegReset	(Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [llll $1 \begin{array}{ll}1 & 1\end{array}$.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amounts. Default $=100$.


LegType	(Optional) NINST-by-2 matrix. Each row represents an   instrument. Each column indicates if the corresponding   leg is fixed (1) or floating (0). This matrix defines the   interpretation of the values entered in LegRate. Default   is [1 0 0 for each instrument.
Options	(Optional) Derivatives pricing options structure created   with derivset.

The Settle date for every swap is set to the ValuationDate of the HJM tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

## Description

## Examples

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) computes the price of a swap instrument from an HJM interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0.

PriceTree is the tree structure with a vector of the swap values at each node.
CFTree is the tree structure with a vector of the swap cash flows at each node.
SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN .

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are

- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.

```
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Price the swap using the HJMTree included in the MAT-file deriv.mat. The HJMTree structure contains the time and forward-rate information needed to price the instrument.

```
load deriv;
```

Use swapbyhjm to compute the price of the swap.

```
[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
 3.6923
PriceTree =
 FinObj: 'HJMPriceTree'
 tObs: [0 1 1 2 3 4]
 PBush: {1x5 cell}
CFTree =
 FinObj: 'HJMCFTree'
 tObs: [0 1 2 3 4]
 CFBush: {[0] [1x1x2 double] [1x2x2 double] ...[1x8 double]}
```

Using the function treeviewer, you can examine CFTree graphically and see the cash flows from the swap along both the up and the down branches. A positive cash flow indicates an inflow (income - payments $>0$ ), while a negative cash flow indicates an outflow (income - payments $<0$ ).

```
treeviewer(CFTree)
```



Note treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest-rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).

In this example you have sold a swap (receive fixed rate and pay floating rate). At time $t=3$, if interest rates go down, your cash flow is positive ( $\$ 2.63$ ), meaning that you will receive this amount. But if interest rates go up, your cash flow is negative (-\$1.58), meaning that you owe this amount.

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
 0
PriceTree =
FinObj: 'HJMPriceTree'
 tObs: [l0 1 1 2 3 4 4]
 PBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}
CFTree =
FinObj: 'HJMCFTree'
 tObs: [[0 1 1 2 3 4]
CFBush:{[0] [1\times1\times2 double] [1\times2x2 double] ... [1\times8 double]}
SwapRate =
 0.0466
capbyhjm, cfbyhjm, floorbyhjm, hjmtree
```

See Also

Purpose

Syntax	[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options)	
Arguments	HWTree	forward-rate tree structure created by hwtree.
	LegRate	Number of instruments (NINST)-by-2 matrix, with each row defined as:
		[CouponRate Spread] or [Spread CouponRate]
		CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg.
	Settle	Settlement date. NINST-by-1 vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap.
	LegReset	(Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [11 1 ].
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),   $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,   $5=30360$ (ISDA), $6=30 / 360$ (European),   7 = actual/365 (Japanese).
	Principal	(Optional) NINST-by-1 vector of the notional principal amounts. Default $=100$.


LegType	(Optional) NINST-by-2 matrix. Each row represents an   instrument. Each column indicates if the corresponding   leg is fixed (1) or floating (0). This matrix defines the   interpretation of the values entered in LegRate. Default   is [1 0] for each instrument.
Options	(Optional) Derivatives pricing options structure created   with derivset.

The Settle date for every swap is set to the ValuationDate of the HW tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

## Description

## Examples

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) computes the price of a swap instrument from a Hull-White interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0.

PriceTree is the tree structure with a vector of the swap values at each node.
SwapRate is a NINST-by- 1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN .

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are

- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2005
- Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.

```
Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Price the swap using the HWTree included in the MAT-file deriv.mat. The HWTree structure contains the time and forward-rate information needed to price the instrument.

```
load deriv;
```

Use swapbyhw to compute the price of the swap.

```
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
 5.9109
PriceTree =
 FinObj: 'HWPriceTree'
 tObs: [0 1 2 3 4]
 PTree: {1x5 cell}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
 Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
SwapRate =
 NaN
```

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
```


## swapbyhw

```
Price =
 1.4211e-014
PriceTree =
FinObj: 'HWPriceTree'
 tObs: [[0 1 1 2 3 4 4]
 PTree: {1x5 cell}
 Connect: {[2] [[2 3 4] [2 2 2 3 4 4]}}
 Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
SwapRate =
 0.0438
```


## See Also

bondbyhw, capbyhw, cfbyhw, floorbyhw, fixedbyhw, hwtree

## Purpose

Syrice, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,
LegReset, Basis, Principal, LegType)

Arguments
$\left.\begin{array}{ll}\text { RateSpec } & \begin{array}{l}\text { A structure containing the properties of an interest-rate } \\ \text { structure. See intenvset for information on creating } \\ \text { RateSpec. }\end{array} \\ \text { LegRate } & \begin{array}{l}\text { Number of instruments (NINST)-by-2 matrix, with each } \\ \text { row defined as: }\end{array} \\ \text { [CouponRate Spread] or [Spread CouponRate] } \\ \text { CouponRate is the decimal annual rate. Spread is the } \\ \text { number of basis points over the reference rate. The first } \\ \text { column represents the receiving leg, while the second } \\ \text { column represents the paying leg. }\end{array}\right\}$

Principal	(Optional) NINST-by-1 vector of the notional principal   amounts. Default $=100$.
LegType	(Optional) NINST-by-2 matrix. Each row represents an
instrument. Each column indicates if the corresponding	
	leg is fixed (1) or floating (0). This matrix defines the   interpretation of the values entered in LegRate. Default   is $\left[\begin{array}{ll}1 & 0\end{array}\right]$ for each instrument.

## Description

## Examples

[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) prices a swap instrument from a set of zero coupon bond rates.

Price is a NINST by number of curves (NUMCURVES) matrix of swap prices. Each column arises from one of the zero curves.

SwapRate is an NINST-by-NUMCURVES matrix of rates applicable to the fixed leg such that the swap's values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN.

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are:

- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.

```
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the bond.

```
load deriv;
```

Use swapbyzero to compute the price of the swap.

```
Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)
Price =
 3.6923
```

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)
Price =
 0
SwapRate =
 0.0466
```

See Also
bondbyzero, cfbyzero, fixedbyzero, floatbyzero

\(\left.$$
\begin{array}{ll}\text { Basis } & \begin{array}{l}\text { (Optional) Day-count basis of the instrument. A vector of } \\
\text { integers. } 0=\text { actual/actual (default), } 1=30 / 360,\end{array}
$$ <br>
2=actual/360, 3=\mathrm{actual} / 365,4=30 / 360 (PSA <br>
compliant), 5=30 / 360 (ISDA compliant), 6=30 / 360 <br>

(European), 7=actual/365 (Japanese).\end{array}\right\}\)| (Optional) End-of-month rule. A vector. This rule applies |
| :--- |
| only when Maturity is an end-of-month date for a month |
| having 30 or fewer days. $0=$ ignore rule, meaning that a |
| bond's coupon payment date is always the same |
| numerical day of the month. $1=$ set rule on (default), |
| meaning that a bond's coupon payment date is always |
| the last actual day of the month. |

Note To obtain accurate results from this function, the Basis and Dates arguments must be consistent. If the Dates argument contains months that have 31 days, Basis must be one of the values that allow months to contain more than 30 days, e.g., Basis $=0,3$, or 7 .

The time2date function is the inverse of date2time.
Show that date2time and time2date are the inverse of each other. First compute the time factors using date2time.

```
Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';
 '31-Dec-2006']) ;
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
Times = date2time(Settle, Dates, Compounding, Basis,...
 EndMonthRule)
```


## time2date

Times =
5.9945
6.9945
7.5738
8.6576

Now use the calculated Times in time2date and compare the calculated dates with the original set.

```
Dates_calc = time2date(Settle, Times, Compounding, Basis,...
 EndMonthRule)
Dates_calc =
 732555
 732736
 732843
 733042
datestr(Dates_calc)
ans =
31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006
```

See Also cftimes in the Financial Toolbox documentation date2time, disc2rate, rate2disc

## Purpose

Syntax $\quad$ Values $=$ treepath (Tree, BranchList)

Tree
BranchList

Recombining binomial tree.
Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix containing the sequence of branchings.

Values = treepath(Tree, BranchList) extracts entries of a node of a recombining binomial tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number one, the second-to-top is two, and so on. Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a recombining tree.

Create a BDT tree by loading the example file.
load deriv.mat;
Then
FwdRates = treepath(BDTTree.FwdTree, $\left.\left.\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$
returns the rates at the tree nodes located by taking the up branch, then the down branch, and finally the up branch again.

FwdRates =
1.1000
1.0979
1.1377
1.1183

You can visualize this with the treeviewer function.

## treeviewer (BDTTree)



See Also
mktree, treeshape

Purpose Retrieve shape of a recombining binomial tree

```
Syntax [NumLevels, NumPos, IsPriceTree] = treeshape(Tree)
```

Arguments Tree Recombining binomial tree.
Description [NumLevels, NumPos, IsPriceTree] = treeshape(Tree) returns information on a recombining binomial tree's shape.

NumLevels is the number of time levels of the tree.
NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each level.

IsPriceTree is a Boolean determining if a final horizontal branch is present in the tree.

Examples Create a BDT tree by loading the example file.
load deriv.mat;
With treeviewer you can see the general shape of the BDT interest-rate tree.

## treeshape

## treeviewer(BDTTree)



With this tree
[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree) returns

NumLevels =
4
$\begin{array}{rrrr}\text { NumPos } & = & & \\ 1 & 1 & 1 & 1\end{array}$

IsPriceTree $=$
0
See Also
mktree, treepath

Purpose

Syntax	treeviewer(Tree)
	treeviewer(PriceTree, InstSet)
	treeviewer(CFTree, InstSet)

Arguments Tree Tree can be any of the following types of trees:

## Interest-rate trees:

- Black-Derman-Toy (BDTTree)
- Black-Karasinski (BKTree)
- Heath-Jarrow-Morton (HJMTree)
- Hull-White (HWTree)

For information on creating interest-rate trees, see

- bktree for information on creating BKTree.
- bdttree for information on creating BDTTree.
- hjmtree for information on creating HJMTree.
- hwtree for information on creating HWTree.


## Money market trees:

- Money market tree (MMktTree)

For information on creating money-market trees, see

- mmktbybdt for information on creating a money-market tree from a BDT interest-rate tree.
- mmktbyhjm for information on creating a money-market tree from an HJM interest-rate tree.

Note: Money market trees cannot be created from BK or HW interest-rate trees.

## Stock price trees:

- Cox-Ross-Rubinstein (CRRTree)
- Equal probabilities (EQPTree)

For information on creating stock price trees, see

- crrtree for information on creating CRRTree.
- eqptree for information on creating EQPTree.

Cash flow trees:

- Black-Derman-Toy (BDTCFTree)
- Heath-Jarrow-Morton (HJMCFTree)

Cash flow trees are created as outputs from the swap functions swapbyhjm and swapbybdt.

Note For the function swapbybdt, which uses a recombining binomial tree, this structure contains only NaNs because cash flows cannot be accurately calculated at every tree node for floating rate notes.

PriceTree
PriceTree is a Black-Derman-Toy (BDTPriceTree), Black-Karasinski (BKPriceTree), Heath-Jarrow-Morton (HJMPriceTree), or Hull-White (HWPriceTree) tree of instrument prices.

CFTree	CFTree is a tree of swap cash flows. You create cash flow   trees when executing the Black-Derman-Toy and   Heath-Jarrow-Morton swap functions.   (Black-Derman-Toy cash flow trees contain only NaNs.)
InstSet	(Optional) Variable containing a collection of   instruments whose prices or cash flows are contained in   a tree. The collection can be created with the function   instadd or as a cell array containing the names of the   instruments. To display the names of the instruments,   the field Name should exist in InstSet. If InstSet is not   passed, treeviewer uses default instruments names   (numbers) when displaying prices or cash flows.

## Description

treeviewer(Tree) displays an interest rate, stock price, or money-market tree.
treeviewer(PriceTree, InstSet) displays a tree of instrument prices. If you provide the name of an instrument set (InstSet) and you have named the instruments using the field Name, the treeviewer display identifies the instrument being displayed with its name. (See Example 3 for a description.) If you do not provide the optional InstSet argument, the instruments are identified by their sequence number in the instrument set. (See Example 6 for a description.)
treeviewer (CFTree, InstSet) displays a cash flow tree that has been created with swapbybdt or swapbyhjm. If you provide the name of an instrument set (InstSet) containing cash flow names, the treeviewer display identifies the instrument being displayed with its name. (See Example 3 for a description.) If the optional InstSet argument is not present, the instruments are identified by their sequence number in the instrument set. See Example 6 for a description.)
treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).
treeviewer provides an interactive display of prices or interest rates. The display is activated by clicking on the nodes along the price or interest rate path shown in the left pane when the function is called. For HJM trees you select the end points of the path, and treeviewer displays all data from beginning to end. With recombining trees, such as BDT, BK and HW, you must click on each node in succession from the beginning ( $\mathrm{t}=1$ ) to the last node $(\mathrm{t}=\mathrm{n}$ ). Do not include the root node, the node at $\mathrm{t}=0$. If you do not click on the nodes in the proper order, you are reminded with the message

```
Parent of selected node must be selected.
```


## treeviewer

## Examples

## Example 1. Display an HJM interest-rate tree.

> load deriv.mat treeviewer(HJMTree)

The treeviewer function displays the structure of an HJM tree in the left pane. The tree visualization in the right pane is blank.


To visualize the actual interest-rate tree, go to the Tree Visualization pane and click on Path (the default) and Diagram. Now, select the first path by clicking on the last node ( $t=3$ ) of the upper branch.


Note that the entire upper path is highlighted in red.

To complete the process, select a second path by clicking on the last node $(t=3)$ of another branch. The second path is highlighted in purple. The final display looks like this.


## Alternative Forms of Display

The Tree Visualization pane allows you to select alternative ways to display tree data. For example, if you select Path and Table as your visualization choices, the final display above instead appears in tabular form.


To see a plot of interest rates along the chosen branches, choose Path and Plot in the Tree Visualization pane.


Note that with Plot selected rising interest rates are shown on the upper branch and declining interest rates on the lower.

Finally, if you choose Node and Children under Tree Visualization, you restrict the data displayed to just the selected parent node and its children.


With Node and Children selected, the choices under Visualization are unavailable.

## Example 2. Display a BDT interest-rate tree.

load deriv.mat
treeviewer (BDTTree)
The treeviewer function displays the structure of a BDT tree in the left pane. The tree visualization in the right pane is blank.


To visualize the actual interest-rate tree, go to the Tree Visualization pane and click on Path (the default) and Diagram. Now, select the first path by clicking on the first node of the up branch ( $\mathrm{t}=1$ ). Continue by clicking on the down branch at the next node ( $\mathrm{t}=2$ ). The two figures below show the treeviewer path diagrams for these selections.


Continue clicking on all nodes in succession until you reach the end of the branch. Note that the entire path you have selected is highlighted in red.

Select a second path by clicking on the first node of the lower branch ( $\mathrm{t}=1$ ). Continue clicking on lower nodes as you did on the first branch. Note that the second branch is highlighted in purple. The final display looks like this.


Example 3. Display an HJM price tree for named instruments.

```
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet); treeviewer(PriceTree, HJMInstSet)
```



## Example 4. Display a BDT price tree for named instruments.

```
load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(PriceTree, BDTInstSet)
```



Example 6. Display an HJM price tree using default instrument names (numbers).
load deriv.mat
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree)

bdttree, bktree, hjmtree, hwtree, instadd, mmktbybdt, mmktbyhjm, swapbybdt, swapbyhjm

## See Also

## trintreepath

Purpose
Syntax Values $=$ treepath (TrinTree, BranchList)
Arguments

Description

Examples
Extract entries from node of recombining trinomial tree

```
Values = treepath(TrinTree, BranchList)
```

TrinTree	Recombining price or interest-rate trinomial tree.
BranchList	Number of paths (NUMPATHS) by path length   (PATHLENGTH) matrix containing the sequence of   branchings.

Create a Hull-White tree by loading the example file.

Values = trintreepath(TrinTree, BranchList) extracts entries of a node of a recombining trinomial tree. The node path is described by the sequence of branchings taken, starting at the root.The top branch is number 1 , the middle branch is 2 , and the bottom branch is 3 . Set the branch sequence to 0 to obtain

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the
load deriv.mat;
Then, for example

returns the rates at the tree nodes located by starting at 0 , taking the up branch at the first node, the middle branch at the second node, and finally the bottom branch at the third node.

FwdRates =
1.0279
1.0528
1.0652
1.0591

You can visualize this with the treeviewer function.

## trintreepath

## treeviewer(HWTree)



See Also
mktrintree, trintreeshape

Purpose

## Syntax

Description

Examples

Arguments TrinTree Recombining price or interest-rate trinomial tree.
Retrieve shape of a recombining trinomial tree
[NumLevels, NumPos, NumStates] = trintreeshape(TrinTree)
[NumLevels, NumPos, NumStates] = trintreeshape(TrinTree) returns information on a recombining trinomial tree's shape.

NumLevels is the number of time levels of the tree.
NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each level.

Create a Hull-White tree by loading the example file.
load deriv.mat;
With treeviewer you can see the general shape of the HW interest-rate tree.

## trintreeshape

treeviewer(HWTree)


With this tree
[NumLevels, NumPos, NumStates] = trintreeshape(HWTree)
returns
NumLevels =
4

NumPos
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$

NumStates =
$\begin{array}{llll}1 & 3 & 5 & 5\end{array}$
See Also
mktrintree, trintreepath

## Derivatives Pricing Options

Pricing Options Structure (p. A-2) Use of the pricing options structure in computing prices of interest-rate based derivatives and equity barrier options.<br>Customizing the Structure (p. A-5) Changing the default values.

## Pricing Options Structure

The MATLAB structure Options provides additional input to most pricing functions. The Options structure

- Tells pricing functions how to use the interest-rate tree to calculate instrument prices.
- Determines what additional information the command window displays along with instrument prices.
- Tells pricing functions which method to use in pricing barrier options.

The pricing options structure is primarily used in the pricing of interest-rate based financial derivatives. However, the BarrierMethod field in the structure allows you to use it in pricing equity barrier options as well.

You provide pricing options in an optional Options argument passed to a pricing function. (See, for example, bondbyhjm, bdtprice, barrierbycrr, or barrierbyeqp.)

## Default Structure

If you do not specify the Options argument in the call to a pricing function, the function uses a default structure. To observe the default structure, use derivset without any arguments.

```
Options = derivset
Options =
 Diagnostics: 'off'
 Warnings: 'on'
 ConstRate: 'on'
 BarrierMethod: 'unenhanced'
```

The Options structure has four fields: Diagnostics, Warnings, ConstRate, and BarrierMethod.

## Diagnostics Field

Diagnostics indicates whether additional information is displayed if the tree is modified. The default value for this option is 'off'. If Diagnostics is set to 'on' and ConstRate is set to 'off', the pricing functions display information
such as the number of nodes in the last level of the tree generated for pricing purposes.

## Warnings Field

Warnings indicates whether to display warning messages when the input tree is not adequate for accurately pricing the instruments. The default value for this option is 'on'. If both ConstRate and Warnings are 'on ', a warning is displayed if any of the instruments in the input portfolio has a cash flow date between tree dates. If ConstRate is 'off', and Warnings is 'on', a warning is displayed if the tree is modified to match the cash flow dates on the instruments in the portfolio.

## ConstRate Field

ConstRate indicates whether the interest rates should be assumed constant between tree dates. By default this option is ' on', which is not an arbitrage-free assumption. Consequently the pricing functions return an approximate price for instruments featuring cash flows between tree dates. Instruments featuring cash flows only on tree nodes are not affected by this option and return exact (arbitrage-free) prices. When ConstRate is 'off', the pricing function finds the cash flow dates for all instruments in the portfolio. If these cash flows do not align exactly with the tree dates, a new tree is generated and used for pricing. This new tree features the same volatility and initial rate specifications of the input tree but contains tree nodes for each date in which at least one instrument in the portfolio has a cash flow. Keep in mind that the number of nodes in a tree grows exponentially with the number of tree dates. Consequently, setting ConstRate 'off' dramatically increases the memory and processor demands on the computer.

## BarrierMethod Field

When using binomial trees to price barrier options, you may require a large number of tree steps to achieve an accurate result when tree nodes do not align with the barrier level. With the BarrierMethod field, the toolbox provides an enhancement method that improves the accuracy of the results without having to use large trees.

The BarrierMethod field can be set to 'unenhanced ' (default) or 'interp'. If you specify 'unenhanced', no correction calculation is used. Otherwise, if you specify 'interp', the toolbox provides an enhanced valuation by interpolating between nodes on barrier boundaries.

You specify the barrier method in the last input argument, Options, of the functions barrierbycrr, barrierbyeqp, crrprice, or eqpprice. Options is a structure that you create with the function derivset. Using derivset you specify whether to use the enhanced or the unenhanced method.

For more information about this algorithm see Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

## Customizing the Structure

Customize the Options structure by passing property name/property value pairs to the derivset function.

As an example, consider an Options structure with ConstRate 'off' and Diagonistics 'on'.

```
Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')
Options =
 Diagnostics: 'on'
 Warnings: 'on'
 ConstRate: 'off'
BarrierMethod: 'unenhanced'
```

To obtain the value of a specific property from the Options structure, use derivget.

```
CR = derivget(Options, 'ConstRate')
CR =
Off
```

Note Use derivset and derivget to construct the Options structure. These functions are guaranteed to remain unchanged, while the implementation of the structure itself may be modified in the future.

Now observe the effects of setting ConstRate 'off '. Obtain the tree dates from the HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate; ...
HJMTree.TimeSpec.Maturity]

```
TreeDates =
 730486
 730852
 7 3 1 2 1 7
 7 3 1 5 8 2
 731947
datedisp(TreeDates)
01-Jan-2000
01-Jan-2001
01-Jan-2002
01-Jan-2003
01-Jan-2004
```

All instruments in HJMInstSet settle on Jan 1st, 2000, and all have cash flows once a year, with the exception of the second bond, which features a period of 2 . This bond has cash flows twice a year, with every other cash flow consequently falling between tree dates. You can extract this bond from the portfolio to compare how its price differs by setting ConstRate to 'on' and 'off'.

```
BondPort = instselect(HJMInstSet, 'Index', 2);
```

instdisp(BondPort)

Index	Type CouponRate Settle	Maturity	Period Basis...		
1	Bond 0.04	$01-J a n-2000$	$01-J a n-2004$	2	NaN...

First price the bond with ConstRate 'on' (default).

```
format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
BondPrice =
 97.52801411736377
```

```
BondPriceTree =
FinObj: 'HJMPriceTree'
 PBush: {1x5 cell}
AIBush: {[0] [1x1x2 double] ... [1\times4\times2 double] [1\times8 double]}
 tObs: [00 1 2 3 4 4]
```

Now recalculate the price of the bond setting ConstRate 'off'.

```
OptionsNoCR = derivset('ConstR', 'off')
OptionsNoCR =
Diagnostics: 'off'
 Warnings: 'on'
 ConstRate: 'off'
[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,...
BondPort, OptionsNoCR)
Warning: Not all cash flows are aligned with the tree. Rebuilding
tree.
BondPriceNoCR =
```

    97.53342361674437
    BondPriceTreeNoCR =
FinObj: 'HJMPriceTree'
PBush: \{1x9 cell\}
AIBush: \{1x9 cell\}
tObs: [0 0.5000 1 1.5000 22.500033 .50004 4]

As indicated in the last warning, because the cash flows of the bond did not align with the tree dates, a new tree was generated for pricing the bond. This pricing method returns more accurate results since it guarantees that the process is arbitrage-free. It also takes longer to calculate and requires more memory. The tObs field of the price tree structure indicates the increased memory usage. BondPriceTree.tObs has only five elements, while BondPriceTreeNoCR.tObs has nine. While this may not seem like a large difference, it has a dramatic effect on the number of states in the last node.

```
size(BondPriceTree.PBush{end})
ans =
 18
size(BondPriceTreeNoCR.PBush{end})
ans =
 128
```

The differences become more obvious by examining the price trees with treeviewer.

```
treeviewer(BondPriceTree, BondPort)
```



## treeviewer(BondPriceTreeNoCR, BondPort)



All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

-2.76	10.43	0.00	98.72
-3.56	16.64	-0.00	97.53
-166.18	13235.59	700.96	0.05
-2.76	10.43	0.00	98.72
-0.01	0.03	0	100.55
46.95	1090.63	14.91	6.28
-969.85	173969.77	1926.72	0.05
-76.39	287.00	0.00	3.690

A

Suggested Reading

## Black-Derman-Toy (BDT) Modeling

A description of the Black-Derman-Toy interest rate model can be found in
Black, Fischer, Emanuel Derman, and William Toy, "A One Factor Model of Interest Rates and its Application to Treasury Bond Options," Financial Analysts Journal, January - February 1990.

## Heath-Jarrow-Morton (HJM) Modeling

An introduction to Heath-Jarrow-Morton modeling, used extensively in the Financial Derivatives Toolbox, can be found in

Jarrow, Robert A., Modelling Fixed Income Securities and Interest Rate Options, McGraw-Hill, 1996, ISBN 0-07-912253-1.

## Hull-White (HW) and Black-Karasinski (BK) Modeling

A description of the Hull-White model and its Black-Karasinski modification can be found in

Hull, John C., Options, Futures, and Other Derivatives, Prentice-Hall, 1997, ISBN 0-13-186479-3.

You can find additional information about the Hull-White single-factor model used in this toolbox in these papers

Hull, J., and A. White, "Numerical Procedures for Implementing Term Structure Models I: Single-Factor Models," Journal of Derivatives, 1994

Hull, J., and A. White, "Using Hull-White Interest Rate Trees," Journal of Derivatives, 1996.

## Cox-Ross-Rubinstein (CRR) Modeling

To learn about the Cox-Ross-Rubinstein model, see
Cox, J. C., S. A. Ross, and M. Rubinstein, "Option Pricing: A Simplified Approach," Journal of Financial Economics, Number 7, 1979, pp.229-263.

## Equal Probabilities Tree (EQP) Modeling

To learn about the Equal Probabilities model, see
Chriss, Neil A., Black Scholes and Beyond: Option Pricing Models, McGraw-Hill, 1996, ISBN 0-7863-1025-1.

## Financial Derivatives

You can find information on the creation of financial derivatives and their role in the marketplace in numerous sources. Among those consulted in the development of the Financial Derivatives Toolbox are

Chance, Don. M., An Introduction to Derivatives, The Dryden Press, 1998, ISBN 0-030-024483-8.

Fabozzi, Frank J., Treasury Securities and Derivatives, Frank J. Fabozzi Associates, 1998, ISBN 1-883249-23-6.

Wilmott, Paul, Derivatives: The Theory and Practice of Financial Engineering, John Wiley and Sons, 1998, ISBN 0-471-983-89-6.
$\left.\begin{array}{ll}\text { American option } & \begin{array}{l}\text { An option that can be exercised any time until its expiration date. Contrast } \\ \text { with European option. }\end{array} \\ \text { Asian option } & \begin{array}{l}\text { An option whose payoff depends upon the average price of the underlying asset } \\ \text { over a certain period of time. }\end{array} \\ \text { arbitrary cash } \\ \text { flow instrument } \\ \text { Bermuda option }\end{array} \quad \begin{array}{l}\text { A set of generic cash flow amounts for which a price needs to be established. } \\ \text { An option that can be exercised on predetermined dates only, usually every } \\ \text { month. See also American option and European option. }\end{array}\right\}$

compound option	An option on an option, such as a call on a call, a put on a put, a call on a put,   or a put on a call.		
delta	The rate of change of the price of a derivative security relative to the price of   the underlying asset; i.e., the first derivative of the curve that relates the price   of the derivative to the price of the underlying security.		
derivative	A financial instrument that is based on some underlying asset. For example,   an option is a derivative instrument based on the right to buy or sell an   underlying instrument.		
deterministic	An interest rate model in which the values of the rates in the next time step are   determined solely by the values of the rates in the current time step.		
model	Coefficient used to compute the present value of future cash flows.		
discount factor			
dollar sensitivity	Sensitivity reported as a dollar price change instead of a percentage price   change.		
down-and-in	A type of barrier option that becomes active if the barrier is reached from   above. See also knock-in.		
down-and-out	A type of barrier option that becomes deactivated if the barrier is reached   from above. See also knock-out.		
European option	An option that can be exercised only on its expiration date. Contrast with   American option.		
ex-dividend date	Date when a declared dividend belongs to the seller rather than the buyer.		
exercise price	The price set for buying an asset (call) or selling an asset (put). The strike   price.		
exotic option	Any nonstandard option. Opposite of vanilla option.		
fixed lookback			
option	Strike price is fixed at purchase. The underlying is priced at its highest or   lowest level, depending whether it is a call or put, during the life of the option   rather than expiring at market.		
floption lookback		$\quad$	A long-term debt security with preset interest rate and maturity, by which the
:---			
interest must be paid. The principal may or may not be paid at maturity.			
during the life of the option; for a put it is fixed at the highest price.			

## Glossary-2

floating-rate note	A security similar to a bond, but in which the note's interest rate is reset   periodically, relative to a reference index rate, to reflect fluctuations in market   interest rates.
floor	Interest-rate option that guarantees that the rate on a floating-rate loan will   not fall below a certain level.
forward curve	The curve of forward interest rates vs. maturity dates for bonds.   forward rate   The future interest rate of a bond inferred from the term structure, especially   from the yield curve of zero-coupon bonds, calculated from the growth factor of   an investment in a zero held until maturity.
gamma	The rate of change of delta for a derivative security relative to the price of the   underlying asset; i.e., the second derivative of the option price relative to the   security price.
Heath-Jarrow-	A model of the interest rate term structure that works with a type of interest   rate tree called a bushy tree.
Morton (HJM)	
model	A securities transaction that reduces or offsets the risk on an existing   investment position.
hedge	A collection of financial assets. A portfolio.
instrument set	
inverse discount	A factor by which the present value of an asset is multiplied to find its future   value. The reciprocal of the discount factor.
knock-in	A barrier option that is activated when the price of the underlying asset   achieves a designated target. There are two types: up-and-in and   down-and-in.
least squares rate	A barrier option that is deactivated when the price of the underlying asset   achieves a designated target. There are two types: up-and-out and   down-and-out.
method mathematical method of determining the best fit of a curve to a series of	


mean reversion	The tendency of a variable to return to its mean value after reaching a point of excessive positive or negative valuation relative to the mean.
option	A right to buy or sell specific securities or commodities at a stated price (exercise or strike price) within a specified time. An option is a type of derivative.
per-dollar sensitivity	The dollar sensitivity divided by the corresponding instrument price.
portfolio	A collection of financial assets. Also called an instrument set.
price tree structure	A MATLAB structure that holds all pricing information.
price vector	A vector of instrument prices.
pricing options structure	A MATLAB structure that defines how the price tree is used to find the price of instruments in the portfolio, and how much additional information is displayed in the command window when the pricing function is called.
put	An option to sell a stipulated amount of stock or securities within a specified time and at a fixed exercise price. See also call.
puttable bond	A bond that allows the holder to redeem the bond at a predetermined price at specified future dates. The bond contains an embedded put option; i.e., the holder has bought a put option. See also callable bond.
rate specification	A MATLAB structure that holds all information needed to identify completely the evolution of interest rates.
rebate	A predetermined amount of money paid to the purchaser of a barrier option if the option fails to execute.
recombining tree	A tree of prices or interest rates whose branches recombine over time. Opposite of a bushy tree.
self-financing hedge	A trading strategy whereby the value of a portfolio after rebalancing is equal to its value at any previous time.
sensitivity	The "what if" relationship between variables; the degree to which changes in one variable cause changes in another variable. A specific synonym is volatility. See also dollar sensitivity.
short rate	The annualized one-period interest rate.

## Glossary-4

$\left.\begin{array}{ll}\begin{array}{l}\text { spot curve, spot } \\ \text { yield curve }\end{array} & \begin{array}{l}\text { See zero curve. } \\ \text { spot rate }\end{array} \\ \text { spread } & \begin{array}{l}\text { The current interest rate appropriate for discounting a cash flow of some given } \\ \text { maturity. }\end{array} \\ \text { stochastic model }\end{array} \quad \begin{array}{l}\text { For options, a combination of call or put options on the same stock with } \\ \text { differing exercise prices or maturity dates. } \\ \text { Involving or containing a random variable or variables; involving chance or } \\ \text { probability. }\end{array}\right]$

## zero curve,

 zero-coupon yield curve
## zero-coupon

bond, or Zero

A yield curve for zero-coupon bonds; zero rates versus maturity dates. Since the maturity and duration (Macaulay duration) are identical for zeros, the zero curve is a pure depiction of supply/demand conditions for loanable funds across a continuum of durations and maturities. Also known as spot curve or spot yield curve.

A bond that, instead of carrying a coupon, is sold at a discount from its face value, pays no interest during its life, and pays the principal only at maturity.

## A

arbitrary cash flow instruments 2-3
Asian option
defined 3-11
Asian options
fixed and floating strike, by CRR 5-13
fixed and floating strike, by EQP 5-16
asianbycrr 5-12
asianbyeqp 5-15
average price options
by CRR 5-13
by EQP 5-16
average strike options
by CRR 5-13
by EQP 5-16

## B

bank format 4-4
barrier option
defined 3-12
types of 3-12
barrierbycrr 5-17
barrierbyeqp 5-20
BDT model 2-4
bdtprice 5-23
bdtsens 5-26
bdttimespec 5-29
bdttree 5-31
input arguments 2-29
bdtvolspec 5-33
forms of volatility 2-30
Bermuda option
bond 2-3
stock 3-14
binomial trees 2-5
BK model 2-4
bkprice 5-34
bksens 5-37
bktimespec 5-39
bktree 5-41
bkvolspec 5-44
Black-Derman-Toy (BDT) model 2-28
Black-Derman-Toy tree 2-50
Black-Karasinski (BK) model 2-29
bond
defined 2-2
bondbybdt 5-46
bondbybk 5-49
bondbyhjm 5-52
bondbyhw 5-55
bondbyzero 5-58
bushpath 5-61
example 2-41
bushshape 5-63
bushy trees 2-5

## C

cap, defined 2-3
capbybdt 5-66
capbybk 5-69
capbyhjm 5-71
capbyhw 5-73
cfbybdt 5-75
cfbybk 5-78
cfbyhjm 5-81
cfbyhw 5-84
cfbyzero 5-87
classfin 5-89
compound option defined 3-13
compoundbyeqp 5-94
constraints 4-22
dependent 4-22
inconsistent 4-25
constructor 1-8
convbyzero 5-109
coupoundbycrr 5-91
CRR and EQP
differences 3-10
CRR model description 3-2
crrprice 5-97
crrsens 5-100
crrtimespec 5-102
crrtree 5-103
cvtree 5-106

## D

date2time 5-109
datedisp 5-111
delta 2-26
defined 4-3
dependent constraints 4-22
deriv.mat 2-6
derivget 5-112
derivset 5-114
descrete time models 3-2
deterministic model 2-23
differences between CRR and EQP 3-10
disc2rate 5-117
purpose 2-9
syntax 2-13
discount factors 2-9
dollar sensitivities
from interest-rate models 2-58
from interest-rate term structure 2-26
from stock trees 3-22

## E

EQP model description 3-2
eqpprice 5-120
eqpsens 5-123
eqptimespec 5-125
eqptree 5 -126
equity binary trees building 3-2
equity exotic options
types 3-15
types of 3-11

## F

field 1-9
fixed lookback options 3-13
fixedbybdt 5-129
fixedbybk 5-131
fixedbyhjm 5-133
fixedbyhw 5-135
fixedbyzero 5-137
fixed-rate note, defined 2-3
floatbybdt 5-139
floatbybk 5-141
floatbyhjm 5-143
floatbyhw 5-145
floatbyzero 5-147
floating lookback option 3-13
floating-rate note, defined 2-3
floor, defined 2-3
floorbybdt 5-149
floorbybk 5-152
floorbyhjm 5-154
floorbyhw 5-156

## Index-2

## G

gamma 2-26
defined 4-3

## H

Heath-Jarrow-Morton (HJM) model 2-28
Heath-Jarrow-Morton tree 2-50
hedgeopt 5-158
purpose 4-3
hedgeslf 5-161
purpose 4-3
hedging
considerations 4-2
functions 4-3
goals 4-3
HJM model
described 2-4
HJM pricing options structure A-2
hjmprice 5-165
hjmsens 5-168
hjmtimespec 5-171
HJMTree 2-50
hjmtree 5-173
input arguments 2-29
hjmvolspec 5-175
forms of volatility 2-30
Hull-White (HW) model 2-28
HW model 2-4
hwprice 5-178
hwsens 5-181
hwtimespec 5-183
hwtree 5-185
hwvolspec 5-188

## I

inconsistent constraints 4-25
instadd 5-190
creating an instrument 1-4
instaddfield 5-193
creating new instruments 1-9
instasian> 5-197
instbarrier 5-199
instbond 5-201
instcap 5-203
instcf 5-205
instcompound 5-207
instdelete 5-209
instdisp 5-211
instfields 5-213
instfind 5-216
purpose 1-11
syntax 1-12
instfixed 5-219
instfloat 5-221
instfloor 5-223
instget 5-225
instgetcell 5-230
instlength 5-235
instlookback 5-236
instoptbnd 5-238
instoptstock 5-240
instrument
creating 1-9
instrument constructor 1-8
instrument index 1-11
instselect 5-242
purpose 1-11
instsetfield 5-245
instswap 5-249
insttypes 5-251
intenvget 5-253
purpose 2-20
intenvprice 5-255
intenvsens 5-257
intenvset 5-259
purpose 2-18
interest rate term structure, defined 2-9
inverse discount 2-39
isafin 5-263

## L

least squares problem 4-20
lookback option
defined 3-13
types of 3-13
lookbackbycrr 5-264
lookbackbyeqp 5-266

## M

mkbush 5-268
mktree 5-270
mktrintree 5-271
mmktbybdt 5-272
mmktbyhjm 5-273
model
Black-Derman-Toy (BDT) 2-28
Black-Karasinski (BK) 2-29
Cox-Ross-Rubinstein (CRR) 3-2
Equal Probabilities (EQP) 3-2
Heath-Jarrow-Morton (HJM) 2-28
Hull-White (HJW) 2-28
multifactor volatility models 2-31

## 0

object 1-8
observation time zero 2-55
optbnbybk 5-278
optbnbyhw 5-286
optbndbybdt 5-274
optbndbyhjm 5-282
Options argument
input to pricing functions 2-50
optstockbycrr 5-290
optstockbyeqp 5-293

## P

per-dollar sensitivities calculating 2-59
example 2-27
portfolio 1-4
creation 1-4
management 1-8
portfolio pricing functions
equity derivatives $3-15$
interest-rate based 2-49
price tree structure 2-56
Price vector
BDT 2-57
HJM 2-55
pricing options default structure A-2 structure A-2

## R

rate specification 2-9
rate2disc 5-296
creating inverse discounts 2-39
purpose 2-9
RateSpec
creation of 2-30

## Index-4

defined 2-9
using with HJM 2-33
ratetimes 5-300
purpose 2-9
rebate 3-12
recombining trees 2-5
root node 5-336

## S

sensitivity
per-dollar, viewing 2-59
types of 2-26
sensitivity functions 2-58
short rate 2-4
specific-instrument pricing functions 2-50
stochastic model 2-23
stock structure 3-3
stockspec 5-304
swap, defined 2-3
swapbybdt 5-306
swapbybk 5-310
swapbyhjm 5-314
swapbyhw 5-319
swapbyzero 5-323

## T

time2date 5-326
TimeSpec
defined 2-30
for stock trees 3-5
using 2-35
treepath 5-329
trees
binomial 2-5
bushy 2-5
recombining 2-5
trinomial 2-5
treeshape 5-331
treeviewer
with recombining trees 2-64
treeviewer 5-333
displaying BDT trees 5-342
displaying HJM trees 5-338
examining values with 2-61
purpose 2-6
trinomial trees 2-5
trintreepath 5-349
trintreeshape>df> 5-351
TypeString argument 1-4

## U

under-determined system 4-21

## V

vanilla swaps 2-3
vega, defined 4-3
volatility
process 2-31
VolSpec
BDT 2-32
calling syntax 2-30
HJM 2-30
using 2-31


[^0]:    See Also
    instaddfield, instdisp, instget

